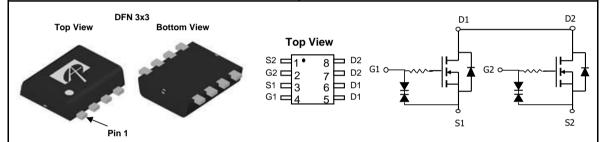


AON3814

20V Dual N-Channel MOSFET

General Description


The AON3814 uses advanced trench technology to provide excellent $R_{\rm DS(ON)}$, low gate charge and operation with gate voltages as low as 1.8V while retaining a 12V $V_{\rm GS(MAX)}$ rating. It is ESD protected. This device is suitable for use as a uni-directional or bi-directional load switch, facilitated by its common-drain configuration.

Product Summary

 $\begin{array}{lll} V_{DS} & 20V \\ I_{D} \; (at \; V_{GS} \! = \! 4.5V) & 6A \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 4.5V) & < 17 m \Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 4V) & < 18.5 m \Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 3.1V) & < 23 m \Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 2.5V) & < 24 m \Omega \end{array}$

ESD Protected

Absolute Maximum Ratings T_A=25°C unless otherwise noted Parameter Symbol

Parameter		Symbol	Maximum	Units		
Drain-Source Voltage		V_{DS}	20	V		
Gate-Source Voltage		V_{GS}	±12	V		
Continuous Drain T	_C =25°C		6			
Current ^F T	_C =70°C	'D	5.3	А		
Pulsed Drain Current ^B		I _{DM}	40			
T	T _C =25°C		2.5	W		
Power Dissipation F T	_C =70°C	- D	1.6	VV		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C		

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	D	40	50	°C/W			
Maximum Junction-to-Ambient A	Steady-State	$R_{\theta JA}$	75	95	°C/W			
Maximum Junction-to-Lead ^C	Steady-State	$R_{\theta JL}$	30	40	°C/W			

Electrical Characteristics (T_{.I}=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units			
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D=250\mu A, V_{GS}=0V$	20			V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =20V, V _{GS} =0V			1	μА			
	Zero Gate Voltage Drain Gurrent	T _J =55°C			5				
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±10V			10	μΑ			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_D=250\mu A$	0.3	0.7	1.1	V			
$I_{D(ON)}$	On state drain current	V_{GS} =4.5V, V_{DS} =5V	40			Α			
	Static Drain-Source On-Resistance	V _{GS} =4.5V, I _D =6A		12.5	17	mΩ			
		T _J =125°C		18.5	24	1112.2			
P		V_{GS} =4V, I_D =6A		12.9	18.5	mΩ			
R _{DS(ON)}		V_{GS} =3.1V, I_D =6A		14	23	mΩ			
		V_{GS} =2.5V, I_D =6A		15.6	24	mΩ			
		V_{GS} =1.8V, I_D =6A		23		mΩ			
9 _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =6A		33		S			
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.6	1	V			
Is	Maximum Body-Diode Continuous Current				3.5	Α			
DYNAMIC	PARAMETERS								
C _{iss}	Input Capacitance		730	920	1100	pF			
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =10V, f=1MHz	110	155	200	pF			
C_{rss}	Reverse Transfer Capacitance		45	75	105	pF			
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		2.4		kΩ			
SWITCHI	NG PARAMETERS			-	-				
Q_g	Total Gate Charge		8.8	11	13	nC			
Q_{gs}	Gate Source Charge	V_{GS} =4.5V, V_{DS} =10V, I_{D} =6A	1.6	2	2.4	nC			
Q_{gd}	Gate Drain Charge		1.9	3.2	4.5	nC			
t _{D(on)}	Turn-On DelayTime			0.3		μS			
t _r	Turn-On Rise Time	V_{GS} =5V, V_{DS} =10V, R_L =1.7 Ω ,		0.6		μS			
$t_{D(off)}$	Turn-Off DelayTime	$R_{GEN}=3\Omega$		7.9		μS			
t _f	Turn-Off Fall Time			4.4		μS			

A. The value of R_{n1a} is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25^\circ$ C. The value in any given application depends on the user's specific board design.

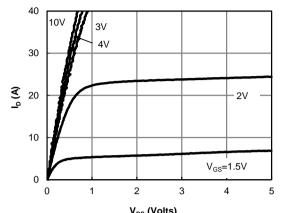
APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

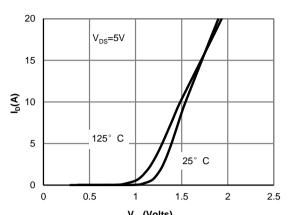
www.aosmd.com Page 2 of 5 Rev 6.1: August 2023

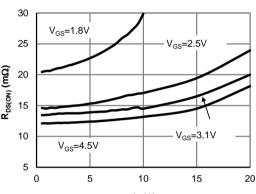
B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using \leq 10s junction-to-ambient thermal resistance.

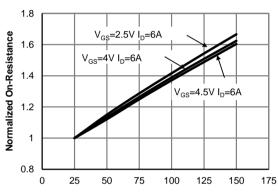
C. Repetitive rating, pulse width limited by junction temperature T_{I(MAX)}=150° C. Ratings are based on low frequency and duty cycles to keep initialT₁=25° C.

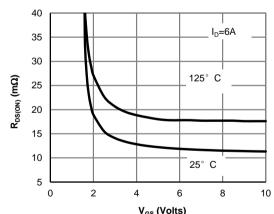

D. The R_{NJA} is the sum of the thermal impedance from junction to lead R_{NJL} and lead to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

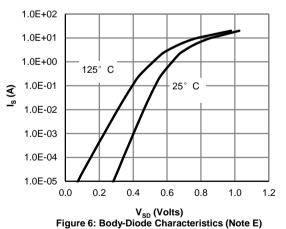
F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in² FR-4 board with


²oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.


TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS


V_{DS} (Volts) Fig 1: On-Region Characteristics (Note E)

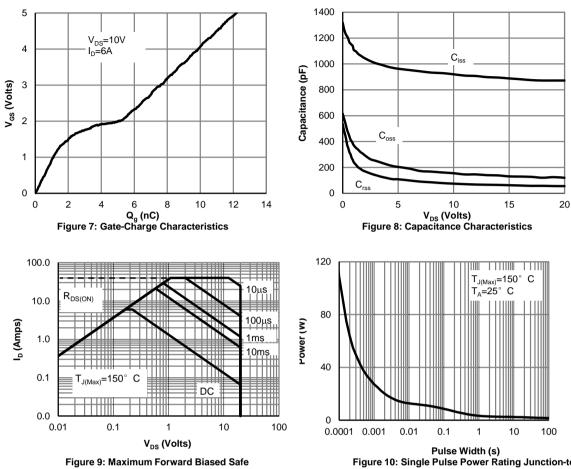
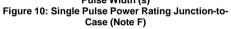
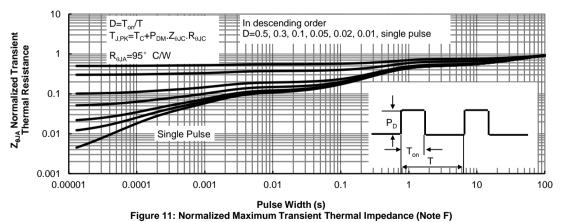

V_{GS}(Volts)
Figure 2: Transfer Characteristics (Note E)

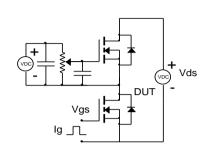

 $\mbox{I}_{\mbox{\tiny D}}$ (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

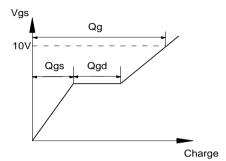
Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature (Note E)

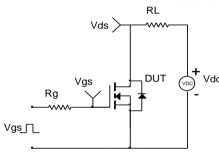
V_{GS} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

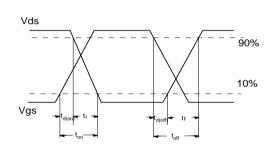
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

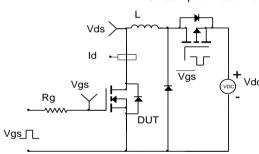




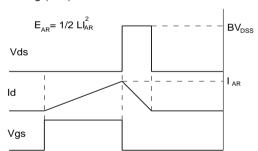

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

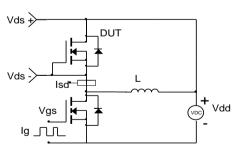


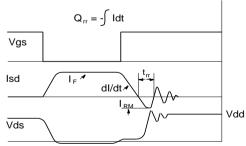



Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

