General Description

The AO3162 is fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications. By providing low $R_{DS(on)}$, C_{iss} and C_{rss} along with guaranteed avalanche capability this device can be adopted quickly into new and existing offline power supply designs.

Product Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current</td>
<td>I_{D}</td>
<td>0.034</td>
<td>A</td>
</tr>
<tr>
<td>Peak diode recovery dv/dt</td>
<td>P_{D}</td>
<td>1.39</td>
<td>W</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>t_{JL}</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Thermal Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Junction-to-Ambient A</td>
<td>R_{JA}</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Maximum Junction-to-Ambient A</td>
<td>R_{KL}</td>
<td>63</td>
<td>80</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings $T_{A}=25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current</td>
<td>I_{D}</td>
<td>0.034</td>
<td>A</td>
</tr>
<tr>
<td>Peak diode recovery dv/dt</td>
<td>P_{D}</td>
<td>1.39</td>
<td>W</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>t_{JL}</td>
<td>70</td>
<td>90</td>
</tr>
<tr>
<td>Junction and Storage Temperature Range</td>
<td>$T_{JL, STG}$</td>
<td>-50 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>
Electrical Characteristics \((T_J=25\,^\circ C\) unless otherwise noted)\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{BV}_{DSS})</td>
<td>Drain-Source Breakdown Voltage</td>
<td>(I_D=250\mu A, V_{GSS}=0V, T_J=25,^\circ C)</td>
<td>600</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>(\text{I}_{DSS})</td>
<td>Zero Gate Voltage Drain Current</td>
<td>(D=250\mu A, V_{GSS}=0V)</td>
<td>-</td>
<td>700</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>(\Delta V)</td>
<td>Zero Gate Voltage Drain Current</td>
<td>(V_{GSS}=600V, V_{GSS}=0V)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(\text{I}_{GSS})</td>
<td>Gate-Body leakage current</td>
<td>(V_{GSS}=0V, V_{GSS}=\pm30V)</td>
<td>-</td>
<td>-</td>
<td>±100</td>
<td>nA</td>
</tr>
<tr>
<td>(R_{DS(on)})</td>
<td>Gate Threshold Voltage</td>
<td>(V_{GSS}=5V, I_D=8\mu A)</td>
<td>2.8</td>
<td>3.2</td>
<td>4.1</td>
<td>V</td>
</tr>
<tr>
<td>(I_{BS})</td>
<td>Static Drain-Source On-Resistance</td>
<td>(V_{GSS}=10V, I_D=0.016A)</td>
<td>-</td>
<td>154</td>
<td>500</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(\text{g}_F)</td>
<td>Forward Transconductance</td>
<td>(V_{DS}=40V, I_D=0.016A)</td>
<td>-</td>
<td>0.045</td>
<td>-</td>
<td>S</td>
</tr>
<tr>
<td>(V_{DS})</td>
<td>Diode Forward Voltage</td>
<td>(I_D=0.016A, V_{GSS}=0V)</td>
<td>-</td>
<td>0.74</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>(I_{BS})</td>
<td>Maximum Body-Diode Continuous Current</td>
<td>-</td>
<td>-</td>
<td>0.034</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>(I_{BSM})</td>
<td>Maximum Body-Diode Pulsed Current</td>
<td>-</td>
<td>-</td>
<td>0.16</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Dynamic Parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{iss})</td>
<td>Input Capacitance</td>
<td>(V_{GSS}=0V, V_{DB}=25V, f=1MHz)</td>
<td>-</td>
<td>4.2</td>
<td>6</td>
<td>pF</td>
</tr>
<tr>
<td>(C_{oss})</td>
<td>Output Capacitance</td>
<td>(V_{GSS}=0V, V_{DB}=25V, f=1MHz)</td>
<td>-</td>
<td>0.45</td>
<td>0.6</td>
<td>pF</td>
</tr>
<tr>
<td>(C_{rss})</td>
<td>Reverse Transfer Capacitance</td>
<td>(V_{GSS}=0V, V_{DB}=25V, f=1MHz)</td>
<td>-</td>
<td>0.05</td>
<td>0.07</td>
<td>pF</td>
</tr>
<tr>
<td>(R_g)</td>
<td>Gate resistance</td>
<td>(V_{GSS}=0V, V_{DB}=0V, f=1MHz)</td>
<td>14</td>
<td>28</td>
<td>42</td>
<td>(\Omega)</td>
</tr>
</tbody>
</table>

Switching Parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_g)</td>
<td>Total Gate Charge</td>
<td>(V_{GSS}=10V, V_{DB}=400V, I_D=0.01A)</td>
<td>-</td>
<td>0.1</td>
<td>0.15</td>
<td>nC</td>
</tr>
<tr>
<td>(Q_{gs})</td>
<td>Gate Source Charge</td>
<td>(V_{GSS}=10V, V_{DB}=400V, I_D=0.01A)</td>
<td>-</td>
<td>0.03</td>
<td>0.05</td>
<td>nC</td>
</tr>
<tr>
<td>(Q_{gd})</td>
<td>Gate Drain Charge</td>
<td>(V_{GSS}=10V, V_{DB}=400V, I_D=0.01A)</td>
<td>-</td>
<td>0.05</td>
<td>0.08</td>
<td>nC</td>
</tr>
<tr>
<td>(I_{d(on)})</td>
<td>Turn-On Delay Time</td>
<td>(V_{GSS}=10V, V_{DB}=300V, I_D=0.01A, R_g=6\Omega)</td>
<td>-</td>
<td>13.8</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>(I_{d})</td>
<td>Turn-On Rise Time</td>
<td>(V_{GSS}=10V, V_{DB}=300V, I_D=0.01A, R_g=6\Omega)</td>
<td>-</td>
<td>10</td>
<td>15</td>
<td>ns</td>
</tr>
<tr>
<td>(I_{d(off)})</td>
<td>Turn-Off Delay Time</td>
<td>(V_{GSS}=10V, V_{DB}=300V, I_D=0.01A, R_g=6\Omega)</td>
<td>-</td>
<td>39.2</td>
<td>57</td>
<td>ns</td>
</tr>
<tr>
<td>(I_{tr})</td>
<td>Turn-Off Fall Time</td>
<td>(V_{GSS}=10V, V_{DB}=300V, I_D=0.01A, R_g=6\Omega)</td>
<td>-</td>
<td>13</td>
<td>19</td>
<td>ns</td>
</tr>
<tr>
<td>(I_{br})</td>
<td>Body Diode Reverse Recovery Time</td>
<td>(I_F=0.016A, dI/dt=100A/\mu s, V_{DS}=300V)</td>
<td>-</td>
<td>105</td>
<td>160</td>
<td>ns</td>
</tr>
<tr>
<td>(Q_{br})</td>
<td>Body Diode Reverse Recovery Charge</td>
<td>(I_F=0.016A, dI/dt=100A/\mu s, V_{DS}=300V)</td>
<td>-</td>
<td>9.5</td>
<td>14.3</td>
<td>nC</td>
</tr>
</tbody>
</table>

A: The value of \(R_{\theta JA}\) is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with \(T_J=25\,^\circ C\). The value in any given application depends on the user’s specific board design.

B: Repetitive rating, pulse width limited by junction temperature.

C: The \(R_{\theta JA}\) is the sum of the thermal impedance from junction to lead \(R_{\theta JL}\) and lead to ambient.

D: The static characteristics in Figures 1 to 6 are obtained using <300 \(\mu s\) pulses, duty cycle 0.5% max.

E: These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with \(T_J=25\,^\circ C\). The SOA curve provides a single pulse rating.

F: The current rating is based on the \(I\leq10s\) thermal resistance rating.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region Characteristics

Fig 2: Transfer Characteristics

Fig 3: On-Resistance vs. Drain Current and Gate Voltage

Fig 4: On-Resistance vs. Junction Temperature

Fig 5: Break Down vs. Junction Temperature

Fig 6: Body-Diode Characteristics
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note E)
Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Rev0: May 2012

www.aosmd.com

Page 5 of 5