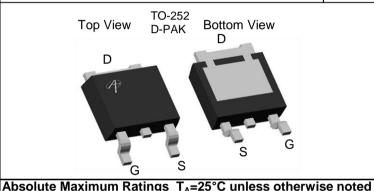


AOD480

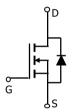
30V N-Channel MOSFET

General Description

The AOD480 uses advanced trench technology and design to provide excellent $R_{\text{DS}(\text{ON})}$ with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications.


Features

$$\begin{split} &V_{DS}\left(V\right) = 30V \\ &I_{D} = 25A \; (V_{GS} = 10V) \\ &R_{DS(ON)} < 23 \; m\Omega \; (V_{GS} = 10V) \\ &R_{DS(ON)} < 33 \; m\Omega \; (V_{GS} = 4.5V) \end{split}$$


100% UIS Tested 100% Rg Tested

°C

Junction and Storage Temperature Range

-55 to 175

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage Gate-Source Voltage		V _{DS}	30	V	
		V_{GS}	±20		
Continuous Drain	T _C =25°C		25		
Current ^G	T _C =100°C	I _D	18	A	
Pulsed Drain Current C		I _{DM}	64		
Avalanche Current ^C		I _{AR}	12	А	
Repetitive avalanche energy L=0.1mH ^C		E _{AR}	7	mJ	
	T _C =25°C	P _D	21	W	
Power Dissipation ^B	T _C =100°C	- PD	11	VV	
	T _A =25°C	Ь	2.5	W	
Power Dissipation A	T ₄ =70°C	P _{DSM}	1.6	T VV	

Thermal Characteristics									
Parameter	Symbol	Тур	Max	Units					
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{ hetaJA}$	16.7	25	°C/W				
Maximum Junction-to-Ambient A	Steady-State	N _θ JA	40	50	°C/W				
Maximum Junction-to-Case B	Steady-State	$R_{\theta JC}$	4.5	7	°C/W				

 $\mathsf{T}_\mathsf{J},\,\mathsf{T}_\mathsf{STG}$

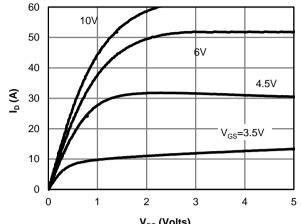
Electrical Characteristics (T_{.1}=25°C unless otherwise noted)

Symbol	Parameter Conditions		Min	Тур	Max	Units				
STATIC PARAMETERS										
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V				
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V		0.004	1	μА				
		T _J =55	°C		5	μ				
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			100	nA				
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250$ μA	1.5	2.1	2.6	V				
$I_{D(ON)}$	On state drain current	$V_{GS}=10V, V_{DS}=5V$	64			Α				
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =20A		18.5	23	mΩ				
		T _J =125	°C	26	32					
		V_{GS} =4.5V, I_D =8A		25.4	33	mΩ				
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=20A$		20		S				
V_{SD}	Diode Forward Voltage	$I_S=1A, V_{GS}=0V$		0.75	1	V				
Is	Maximum Body-Diode Continuous Curre			3.2	Α					
DYNAMIC	PARAMETERS									
C _{iss}	Input Capacitance			373	448	pF				
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz		67		pF				
C _{rss}	Reverse Transfer Capacitance			41		pF				
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		2	2.8	Ω				
SWITCHI	NG PARAMETERS									
Q _g (10V)	Total Gate Charge		5.7	7.1	8.6	nC				
Q _g (4.5V)	Total Gate Charge	\/ _10\/ \/ _15\/ _20\	2.7	3.5	4.2	nC				
Q_{gs}	Gate Source Charge	V_{GS} =10V, V_{DS} =15V, I_{D} =20A		1.2		nC				
Q_{gd}	Gate Drain Charge			1.6		nC				
t _{D(on)}	Turn-On DelayTime			4.3		ns				
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =0.750	2,	2.8		ns				
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		15.8		ns				
t _f	Turn-Off Fall Time			3		ns				
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=100A/μs	8.4	10.5	12.6	ns				
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=100A/μs	3.6	4.5	5.4	nC				

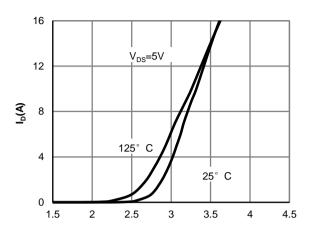
A: The value of R $_{\theta JA}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25 $^\circ$ C. The Power dissipation P_{DSM} is based on R BLA and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design, and the maximum temperature of 175° C may be used if the PCB allows it.

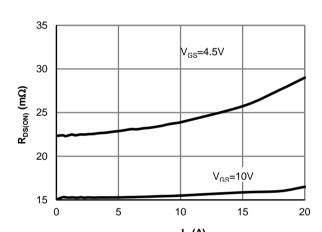
- C: Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=175° C.
- D. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to case R $_{\theta JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.

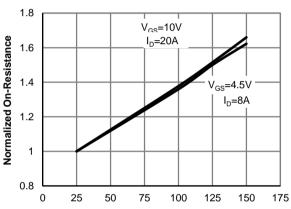
 F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}\!\!=\!\!175^\circ~C.$
- G. The maximum current is limited by package.
- H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C. The SOA curve provides a single pulse rating.
- *This device is guaranteed green after data code 8X11 (Sep 1ST 2008).

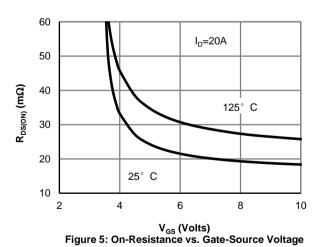

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

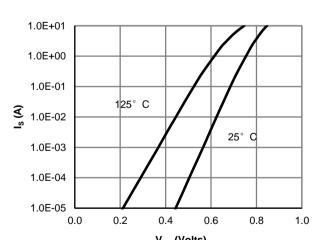
AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale


B. The power dissipation P_D is based on T_{J(MAX)}=175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.


TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS


V_{DS} (Volts) Fig 1: On-Region Characteristics


V_{GS}(Volts)
Figure 2: Transfer Characteristics



 $\rm I_D^{} (A)$ Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature

V_{SD} (Volts)
Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

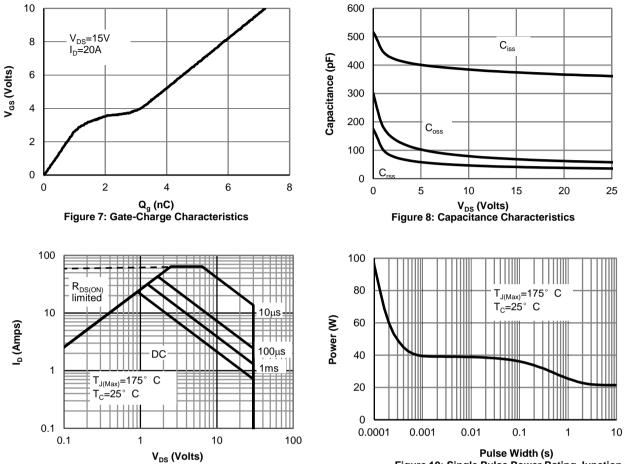
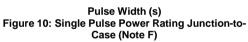
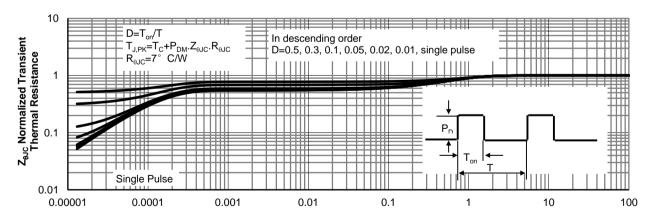




Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

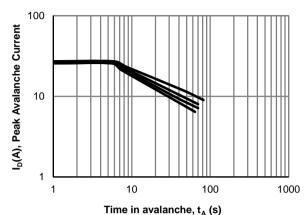
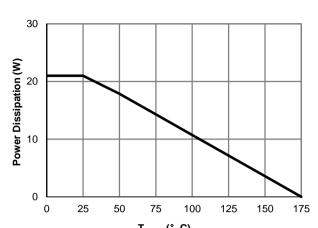
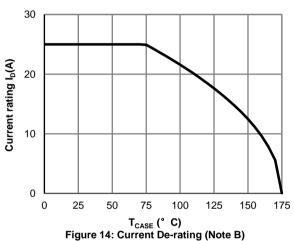
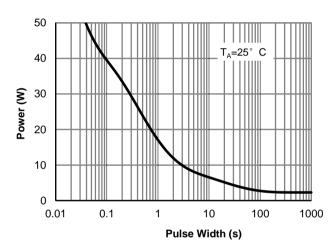
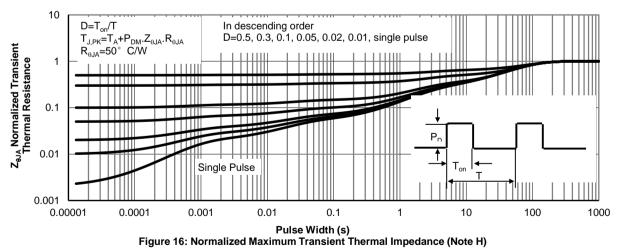
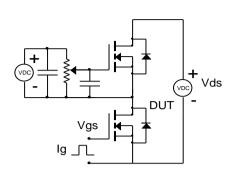
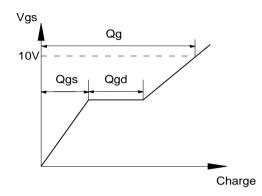
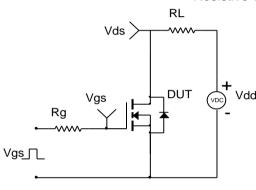




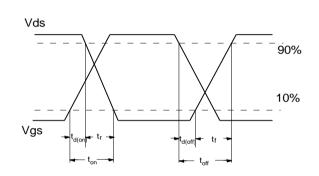
Figure 12: Single Pulse Avalanche capability

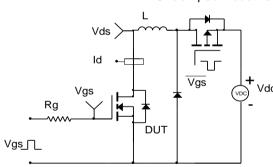
T_{CASE} (° C)
Figure 13: Power De-rating (Note B)

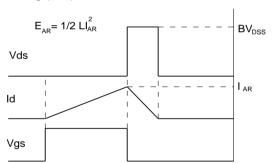




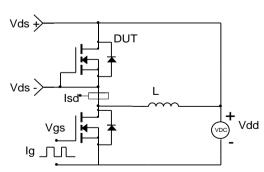

Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

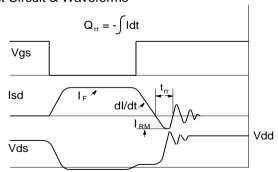



Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

