AOS Semiconductor Product Reliability Report **AOZ5116QI-01** rev A **Plastic Encapsulated Device** ## **ALPHA & OMEGA Semiconductor, Inc** 475 Oakmead Parkway Sunnyvale, CA 94085 United States Tel: (408)830-9742 www.aosmd.com The AOS product reliability report summarizes the qualification results for AOZ5116QI-01 in QFN5x5-31L package. Accelerated environmental tests are performed on a specific sample size, samples are electrically tested before and after each stress time point. Review of final electrical test results confirm that AOZ5116QI-01 pass the AOS quality and reliability requirements. The released products will be categorized by its process family and routinely monitored for continuous improvement of product quality. #### I. Reliability Stress Test Summary and Results | Test Item | Test Condition | Time Point | Sample Size
/ Lots | Number of
Failures | Reference
Standard | |-----------------------------|--|----------------------------|-----------------------|-----------------------|-----------------------| | HTOL | T _J = 150°C,
V _{IN} = 28V | 168 / 500 /
1000 hours | 231 pcs
(3 lots) | 0 | JESD22-A108 | | Preconditioning
(Note A) | T _A = 85°C, RH = 85% +
3 cycle reflow @ 260°C
(MSL 1) | 168hours | 924 pcs
(3 lots) | 0 | JESD22-A113 | | HAST | T _A = 130°C, RH = 85%,
P = 33.3psia,
V _{IN} = 30V | 96 hours | 231 pcs
(3 lots) | 0 | JESD22-A110 | | Autoclave | T _A = 121°C, RH = 100%, P
= 29.7psia | 96 hours | 231 pcs
(3 lots) | 0 | JESD22-A102 | | Temperature
Cycle | T _A = -65°C to 150°C,
air to air | 250 / 500 /
1000 cycles | 231 pcs
(3 lots) | 0 | JESD22-A104 | | HTSL | T _A = 150°C | 1000 hours | 231 pcs
(3 lots) | 0 | JESD22-A103 | | Power Cycling | V _{IN} = 24V, V _{OUT} = 1.0V, F _{SW}
= 600kHz, I _{OUT} = 22A, VCC
cycled 0V-5V @ 1hz | 24hrs, >86k
cycles | 10 pcs
(3 lots) | 0 | AOS Standard | | HTGB
(MOSFET) | T _J = 150°C,
V _{GS} = 12V | 168 / 500 /
1000 hours | 231
(3 lots) | 0 | JESD22-A108 | | HTRB
(MOSFET) | T _J = 150°C,
V _{DS} = 30V | 168 / 500 /
1000 hours | 231
(3 lots) | 0 | JESD22-A108 | | HT3RB
(MOSFET) | T _A = 130°C, RH = 85%,
P = 33.3psia,
V _{DS} = 30V | 168 / 500 /
1000 hours | 231
(3 lots) | 0 | JESD22-A101 | | Validation | 3 cycle reflow @ 260°C +
250 cycles @ T _A = -65°C to
150°C | 250 cycles | 3000
(3 lots) | 0 | AOS Standard | Note: The reliability data presents total of available generic data up to the published date. Note A: MSL (Moisture Sensitivity Level) 1 based on J-STD-020 #### II. Reliability Evaluation The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the product. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours. FIT rate (failures per billion device hours): 0.433 MTTF = 2,311.0 million hrs Condition: $V_o = 25V$, $T_o = 55$ °C, $V_{s(DriverIC)} = 28V$, $V_{s(MOSFET)} = 30V$ and $T_s = 150$ °C **Sample Size:** MOSFET = 6,153, Driver IC = 7,489,074,162 (device-hours) The failure rate (λ) is calculated as follows: $\lambda = \chi^2[CL,(2f+2)]/2 \times [1/(SS \times t \times AF)];$ [equation 1] where CL = % of confidence level f = number of failure SS = sample size t = stress time Looking up the $\chi^2/2$ table for zero failure (burn-in) with 60% confidence, the value of χ^2 [CL,(2f+2)] /2 is 0.92. The Acceleration Factor (AF) is calculated from the following formula (both temperature and voltage acceleration factors are used in the final acceleration factor calculation): AF = AF_T x AF_V = $exp[(E_a/k) x (1/T_0-1/T_s)] x exp[\beta (Vs-Vo)]$ where E_a = activation energy k = Boltzmann constant T_0 = operating T_J $T_s = stress T_J$ V_s = stress voltage V_0 = operating voltage β = voltage acceleration coefficient Assuming typical operating environment, $V_o = 25V$, $T_o = 55^{\circ}C$, $E_a = 0.7eV$, $V_{s(DriverIC)} = 28V$, $V_{s(MOSFET)} = 30V$, $T_s = 150^{\circ}C$, $\beta = 0.5$ (silicon defect) $$AF(DriverIC) = \exp\left[\left(\frac{0.7}{8.617E - 5}\right) \bullet \left(\frac{1}{273 + 55} - \frac{1}{273 + 150}\right)\right] \bullet \exp[0.5 \bullet (28V - 25V)]$$ $$AF(MOSFET) = \exp\left[\left(\frac{0.7}{8.617E - 5}\right) \bullet \left(\frac{1}{273 + 55} - \frac{1}{273 + 150}\right)\right] \bullet \exp[0.5 \bullet (30V - 25V)]$$ Substituting the values in equation 1, we have $\lambda = 2 \cdot \lambda(MOSFET) + \lambda(DriverIC) =$ $$0.92 \bullet \frac{2}{Sample\ Size \bullet\ Stress\ Duration \bullet\ AF(MOSFET)} + \frac{1}{sample\ Size \bullet\ Stress\ Duration \bullet\ AF(DriverIC)} hr^{-1}$$ $\lambda = 0.433 \, 10^{-9} \, \text{hr}^{-1}$ or 0.433 FIT; MTTF = $(1/\lambda) = 2,311.0 \, \text{million hrs} = 263,814 \, \text{years}$ The calculation shows failure rate is 0.433 FIT, MTTF is 2,311.0 million hours under typical operating conditions. ### III. ESD and Latch Up Test Results | Test | Test Conditions | Total Sample
Size | Number of
Failures | Reference
Standard | |---|--|----------------------|-----------------------|-----------------------| | Electrostatic Discharge
Human Body Model | T _A = 25°C, +/-1.5kV | 10 | 0 | JESD-A114 | | Electrostatic Discharge
Charged Device Model | T _A = 25°C, +/-1kV | 10 | 0 | JESD-C101 | | Latch Up | T _A = 25°C,
+/-100mA, 1.5x OV | 10 | 0 | JESD78 | | Latch Up | T _A = 125°C,
+/-100mA, 1.5x OV | 10 | 0 | JESD78 | Note: ATE results are used to determine PASS/FAIL. Parametric shift<10%.