

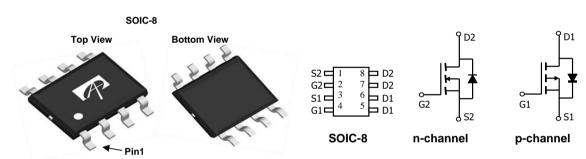
AO4612

60V Complementary Enhancement Mode Field Effect Transistor

General Description

The AO4612 uses advanced trench technology MOSFETs to provide excellent $R_{\text{DS(ON)}}$ and low gate charge. The complementary MOSFETs may be used in H-bridge, Inverters and other applications.

Features


n-channel p-channel $V_{DS}(V) = 60V$ -60V

 $I_D = 4.5A (V_{GS} = 10V)$ $-3.2A (V_{GS} = -10V)$

$$\begin{split} R_{DS(ON)} \\ &< 105 \text{m}\Omega \; (\text{V}_{GS} = \text{-}10\text{V}) \\ &< 135 \text{m}\Omega \; (\text{V}_{GS} = \text{-}4.5\text{V}) \end{split}$$
 $\begin{array}{l} {\rm R_{DS(ON)}} \\ < 56 {\rm m}\Omega \; ({\rm V_{GS}}\text{=}10 {\rm V}) \end{array}$ < 77m $\Omega (V_{GS}=4.5V)$

100% Rg Tested 100% UIS Tested

Parameter			Symbol	Max n-channel	Max p-channel	Units	
Drain-Source Voltage			V_{DS}	60	-60	V	
Gate-Source Voltage			V_{GS}	±20	±20	V	
Continuous Drain	T _A =25°C			4.5	-3.2		
Current ^A	T _A =70°C		I _D	3.6	-2.6	Α	
Pulsed Drain Current ^B		I _{DM}	20	-20			
	T _A =25°C		В	2	2	W	
Power Dissipation	T _A =70°C		P_D	1.28	1.28	VV	
Junction and Storage Temperature Range			T_J, T_{STG}	-55 to 150	-55 to 150	°C	
Thermal Character	istics: n-cha	nnel and p-channe	el		•		
Parameter		Symbol	Тур	Max	Units		
Maximum Junction-to-Ambient ^A t ≤ 10s		$R_{ heta JA}$	48	62.5	°C/W		
Maximum Junction-to-Ambient A Steady-State		Steady-State	ľθJA	74	90	°C/W	
Maximum Junction-to-Lead ^C Steady-St		Steady-State	$R_{ heta JL}$	35	40	°C/W	

N Channel Electrical Characteristics (T_J=25°C unless otherwise noted)

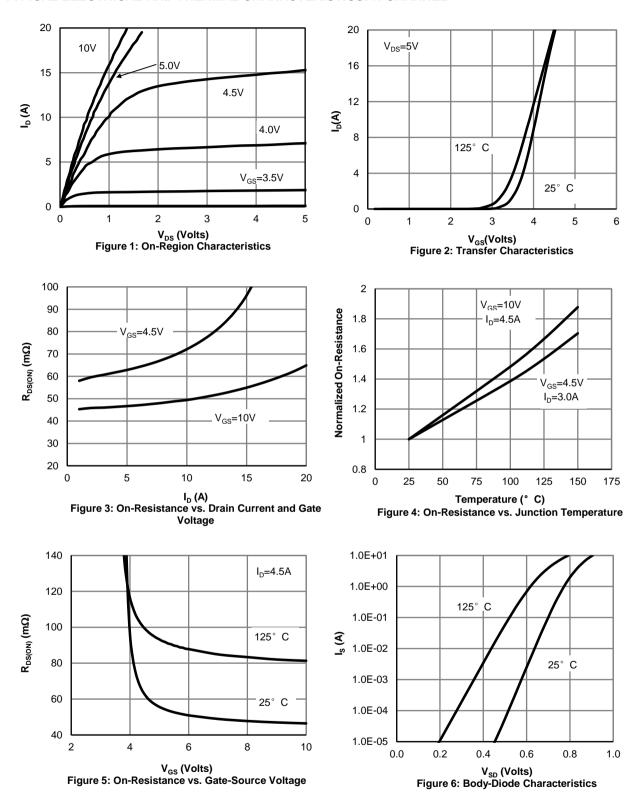
Symbol	Parameter	Conditions	Min	Тур	Max	Units		
STATIC PARAMETERS								
BV _{DSS}	Drain-Source Breakdown Voltage	ource Breakdown Voltage I _D =250μA, V _{GS} =0V				V		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =48V, V _{GS} =0V			1			
		T _J =55°C			5	μА		
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			100	nA		
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$	1	2.1	3	V		
$I_{D(ON)}$	n state drain current V _{GS} =10V, V _{DS} =5V		20			Α		
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =4.5A		46	56	m0		
		T _J =125°C		79		mΩ		
		V_{GS} =4.5V, I_D =3A		64	77	mΩ		
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =4.5A		11		S		
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.74	1	V		
Is	Maximum Body-Diode Continuous Current				3	Α		
DYNAMIC	PARAMETERS							
C _{iss}	Input Capacitance			450		pF		
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =30V, f=1MHz		60		pF		
C _{rss}	Reverse Transfer Capacitance			25		pF		
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		1.65	2	Ω		
SWITCHII	NG PARAMETERS							
Q _g (10V)	Total Gate Charge			8.5	12	nC		
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =30V, I _D =4.5A		4.3	7	nC		
Q_{gs}	Gate Source Charge	V _{GS} -10V, V _{DS} -30V, I _D -4.3A		1.6		nC		
Q_{gd}	Gate Drain Charge			2.2		nC		
$t_{D(on)}$	Turn-On DelayTime			4.7		ns		
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =30V, R_L =6.7 Ω ,		2.3		ns		
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		15.7		ns		
t _f	Turn-Off Fall Time		_	1.9		ns		
t _{rr}	Body Diode Reverse Recovery Time	I _F =4.5A, dI/dt=100A/μs		27.5		ns		
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =4.5A, dI/dt=100A/μs		32		nC		

A: The value of R $_{0JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25° C. The value in any a given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

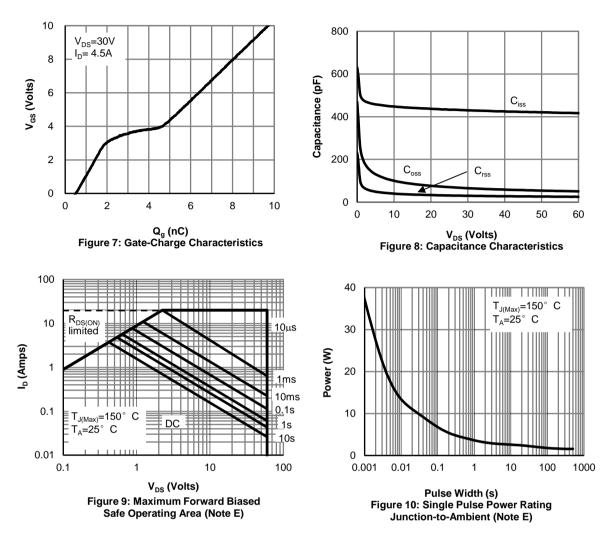
AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

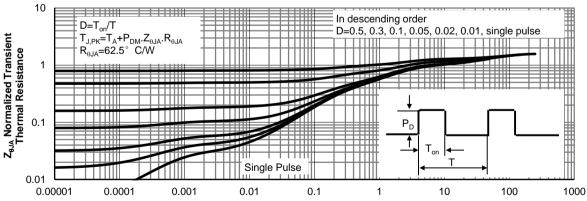
Rev.4.2: August 2023 www.aosmd.com Page 2 of 9


C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

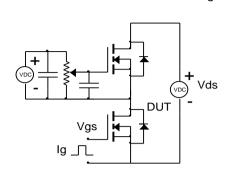
D. The static characteristics in Figures 1 to 6 are obtained using 80 µs pulses, duty cycle 0.5% max.

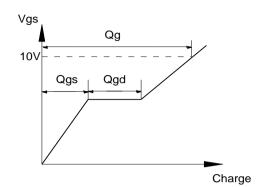
E. These tests are performed with the device mounted on 1 in ² FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C. The SOA curve provides a single pulse rating.



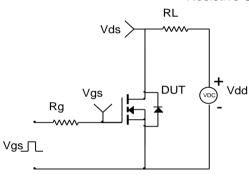

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL

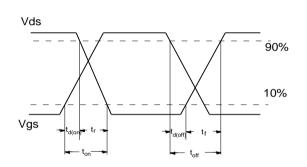
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL

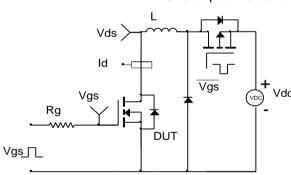


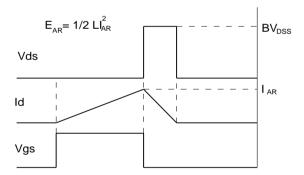


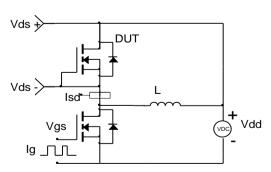
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance

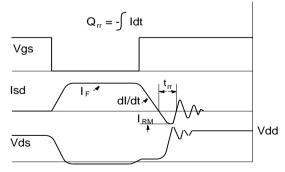



Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

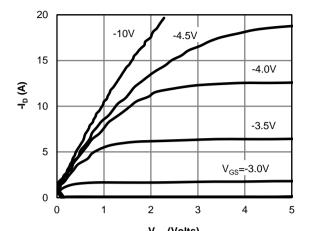
P-Channel Electrical Characteristics (T_{.j}=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC P	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-60			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-48V, V _{GS} =0V			-1	μА
		T _J =55°C			-5	μΑ
I_{GSS}	Gate-Body leakage current V _{DS} =0V, V _{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage $V_{DS}=V_{GS}\ I_{D}=-250\mu A$		-1	-2.1	-3	V
$I_{D(ON)}$	On state drain current	V_{GS} =-10V, V_{DS} =-5V	-20			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-3.2A		84	105	mΩ
		T _J =125°C		145		11122
		V_{GS} =-4.5V, I_{D} =-2.8A		106	135	mΩ
g _{FS}	Forward Transconductance V _{DS} =-5V, I _D =-3.2A			9		S
V_{SD}	Diode Forward Voltage	I_S =-1A, V_{GS} =0V		-0.73	-1	V
I _S	Maximum Body-Diode Continuous Current				-3	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			930		pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-30V, f=1MHz		85		pF
C _{rss}	Reverse Transfer Capacitance			35		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		9.5	15	Ω
SWITCHI	NG PARAMETERS					
Q _g (10V)	Total Gate Charge (10V)			16	22	nC
Q _g (4.5V)	Total Gate Charge (4.5V)	V _{GS} =-10V, V _{DS} =-30V, I _D =-3.2A		8	12	nC
Q_{gs}	Gate Source Charge	V _{GS} =-10V, V _{DS} =-30V, I _D =-3.2A		2.5		nC
Q_{gd}	Gate Drain Charge	1		3.2		nC
t _{D(on)}	Turn-On DelayTime			8		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-30V, R_L =9.4 Ω , R_{GEN} =3 Ω		3.8		ns
t _{D(off)}	Turn-Off DelayTime			31.5	_	ns
t _f	Turn-Off Fall Time]		7.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-3.2A, dI/dt=100A/μs		27	_	ns
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =-3.2A, dI/dt=100A/μs		32		nC

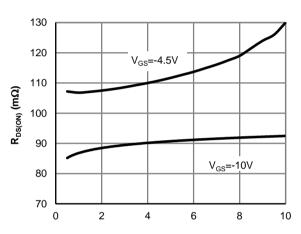
A: The value of R $_{\theta JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25 $^\circ$ C. The value in any a given application depends on the user's specific board design. The current rating is based on the t $^\circ$ 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale


C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

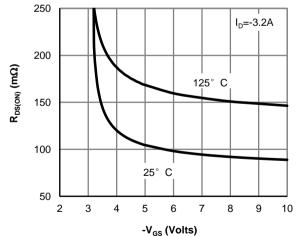
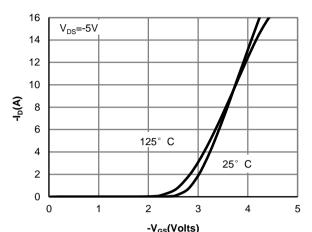
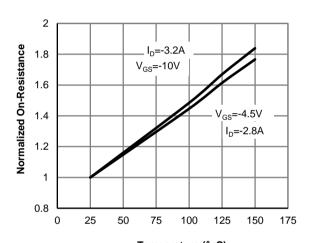
D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80 μs pulses, duty cycle 0.5% max.

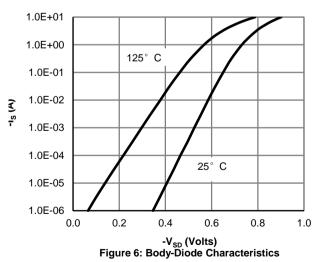

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25 $^\circ$ C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL

-V_{DS} (Volts) Figure 1: On-Region Characteristics

 $\label{eq:local_problem} \textbf{-I}_{\text{D}} \text{ (A)}$ Figure 3: On-Resistance vs. Drain Current and Gate Voltage


Figure 5: On-Resistance vs. Gate-Source Voltage

-V_{GS}(Volts) Figure 2: Transfer Characteristics

Temperature (° C)
Figure 4: On-Resistance vs. Junction Temperature

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL

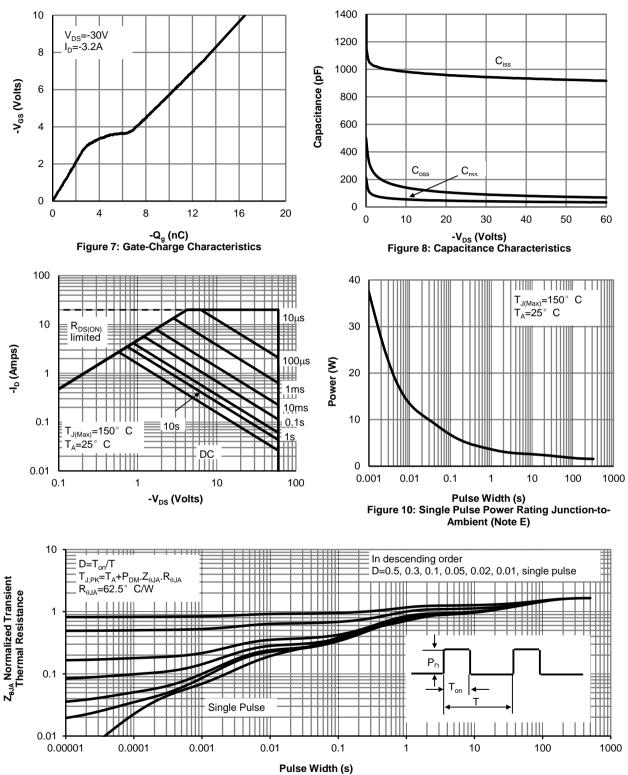
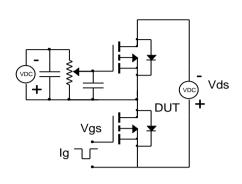
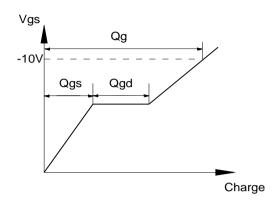
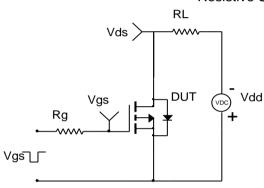
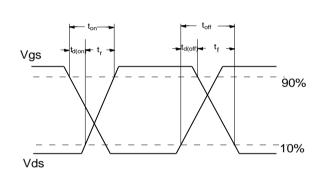
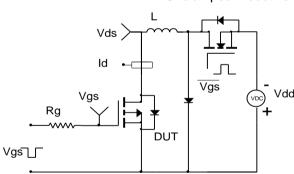
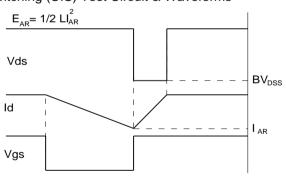




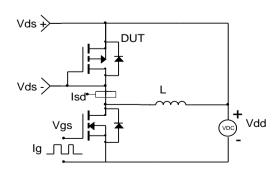
Figure 11: Normalized Maximum Transient Thermal Impedance

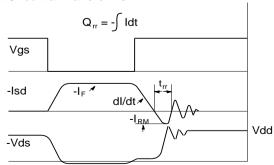



Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

