General Description

AO4629 uses advanced trench technology to provide excellent $R_{DS(on)}$ and low gate charge. This complementary N and P channel MOSFET configuration is ideal for low input Voltage inverter applications.

Product Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Max n-channel</th>
<th>Max p-channel</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-Channel $V_{DS}=30V$</td>
<td>I_D</td>
<td>6A ($V_{GS}=10V$)</td>
<td>-5.5A ($V_{GS}=-10V$)</td>
<td></td>
</tr>
<tr>
<td>V_{GS}</td>
<td>$R_{DS(on)}$</td>
<td>< 30mΩ ($V_{GS}=10V$)</td>
<td>< 41mΩ ($V_{GS}=-10V$)</td>
<td></td>
</tr>
<tr>
<td>$T_A=70°C$</td>
<td>$R_{DS(on)}$</td>
<td>< 42mΩ ($V_{GS}=4.5V$)</td>
<td>< 74mΩ ($V_{GS}=-4.5V$)</td>
<td></td>
</tr>
<tr>
<td>100% UIS Tested</td>
<td></td>
<td></td>
<td>100% UIS Tested</td>
<td></td>
</tr>
<tr>
<td>100% R_g Tested</td>
<td></td>
<td></td>
<td>100% R_g Tested</td>
<td></td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings $T_A=25°C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Max n-channel</th>
<th>Max p-channel</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>30</td>
<td>-30</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>±20</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current</td>
<td>I_D</td>
<td>6</td>
<td>-5.5</td>
<td>A</td>
</tr>
<tr>
<td>$T_A=25°C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_A=70°C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulsed Drain Current C</td>
<td>I_{DM}</td>
<td>30</td>
<td>-25</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche Current C</td>
<td>I_{AS}, I_{AR}</td>
<td>10</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche energy $L=0.1mH$ C</td>
<td>E_{AS}, E_{AR}</td>
<td>5</td>
<td>14</td>
<td>mJ</td>
</tr>
<tr>
<td>Power Dissipation B</td>
<td>P_D</td>
<td>2</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>$T_A=25°C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_A=70°C$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction and Storage Temperature Range</td>
<td>T_J, T_{STG}</td>
<td>-55 to 150</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient A</td>
<td>R_{JJA}</td>
<td>48</td>
<td>62.5</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Ambient A Steady-State</td>
<td>R_{JJA}</td>
<td>74</td>
<td>90</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Lead Steady-State</td>
<td>R_{JJA}</td>
<td>32</td>
<td>40</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Notes:
- A Steady-State
- B $t < 10s$
- C $I_C=25mA$ for $C=0.1mF$

Diagram:
- SOIC-8 package diagram
- Circuit symbol for n-channel and p-channel MOSFETs
N-Channel Electrical Characteristics (T\(_J\)=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV(_{DSS})</td>
<td>Drain-Source Breakdown Voltage</td>
<td>I(D)=250(\mu)A, V({GS})=0V</td>
<td>30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I(_{DSS})</td>
<td>Zero Gate Voltage Drain Current</td>
<td>V({DS})=30V, V({GS})=0V</td>
<td>1</td>
<td></td>
<td></td>
<td>(\mu)A</td>
</tr>
<tr>
<td>Uses</td>
<td>Gate-Body leakage current</td>
<td>V({DS})=0V, V({GS})=±20V</td>
<td>100</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>V(_{GS(th)})</td>
<td>Gate Threshold Voltage</td>
<td>V({DS})=V({GS}), I(_D)=250(\mu)A</td>
<td>1.2</td>
<td>1.8</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>I(_{D(on)})</td>
<td>On state drain current</td>
<td>V({GS})=10V, V({DS})=5V</td>
<td>30</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>R(_{DS(on)})</td>
<td>Static Drain-Source On-Resistance</td>
<td>V(_{GS})=10V, I(_D)=6A</td>
<td>25</td>
<td>30</td>
<td>40</td>
<td>48 m(\Omega)</td>
</tr>
<tr>
<td>g(_F)</td>
<td>Forward Transconductance</td>
<td>V(_{DS})=5V, I(_D)=6A</td>
<td>15</td>
<td></td>
<td></td>
<td>(\Omega)</td>
</tr>
<tr>
<td>V(_{SD})</td>
<td>Diode Forward Voltage</td>
<td>I(S)=1A, V({GS})=0V</td>
<td>0.76</td>
<td></td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>I(_{b})</td>
<td>Maximum Body-Diode Continuous Current</td>
<td>V({GS})=0V, V({DS})=0V, f=1MHz</td>
<td>1.6</td>
<td>3.25</td>
<td>4.9</td>
<td>(\Omega)</td>
</tr>
</tbody>
</table>

STATIC PARAMETERS

- **C\(_{iss}\)**: Input Capacitance
- **C\(_{oss}\)**: Output Capacitance
- **C\(_{rss}\)**: Reverse Transfer Capacitance
- **R\(_{g}\)**: Gate resistance
- **R\(_{DS(ON)}\)**: Static Drain-Source On-Resistance

DYNAMIC PARAMETERS

- **Q\(_{i}\)**: Total Gate Charge
- **Q\(_{g}\)**: Gate Source Charge
- **Q\(_{gd}\)**: Gate Drain Charge
- **t\(_{D(on)}\)**: Turn-On Delay Time
- **t\(_{D(off)}\)**: Turn-Off Delay Time
- **t\(_{rr}\)**: Turn-Off Fall Time
- **I\(_{br}\)**: Body Diode Reverse Recovery Time
- **Q\(_{fr}\)**: Body Diode Reverse Recovery Charge

SWITCHING PARAMETERS

- **Q\(_{i}\)**: Total Gate Charge
- **Q\(_{g}\)**: Gate Source Charge
- **Q\(_{gd}\)**: Gate Drain Charge
- **t\(_{D(on)}\)**: Turn-On Delay Time
- **t\(_{D(off)}\)**: Turn-Off Delay Time
- **t\(_{rr}\)**: Turn-Off Fall Time
- **I\(_{br}\)**: Body Diode Reverse Recovery Time
- **Q\(_{fr}\)**: Body Diode Reverse Recovery Charge

A. The value of R\(_{LX}\) is measured with the device mounted on 1in\(^2\) FR-4 board with 2oz. Copper, in a still air environment with T\(_{A}\) =-25°C. The value in any given application depends on the user’s specific board design.

B. The power dissipation P\(_D\) is based on T\(_{J(MAX)}\)=150°C, using ≤ 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature T\(_{J(MAX)}\)=150°C. Ratings are based on low frequency and duty cycles to keep initial T\(_{J}\)=25°C.

D. The R\(_{LX}\) is the sum of the thermal impedence from junction to lead R\(_{JL}\) and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300\(\mu\)s pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in\(^2\) FR-4 board with 2oz. Copper, assuming a maximum junction temperature of T\(_{J(MAX)}\)=150°C. The SOA curve provides a single pulse rating.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
N-Channel: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)
N-Channel: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

![Gate-Charge Characteristics](image)

Figure 8: Capacitance Characteristics

![Capacitance Characteristics](image)

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

![Maximum Forward Biased Safe Operating Area](image)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note F)

![Single Pulse Power Rating](image)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

![Normalized Maximum Transient Thermal Impedance](image)
Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms
P-Channel Electrical Characteristics (T_{Tamb}= 25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV<sub>DS</sub></td>
<td>Drain-Source Breakdown Voltage</td>
<td>-30</td>
<td>-1</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>ID<sub>DS</sub></td>
<td>Zero Gate Voltage Drain Current</td>
<td>-30 V, V<sub>GS</sub> = 0V</td>
<td>-5</td>
<td>-</td>
<td>µA</td>
</tr>
<tr>
<td>I<sub>ON</sub></td>
<td>Gate-Body leakage current</td>
<td>100</td>
<td>-2</td>
<td>-2.5</td>
<td>nA</td>
</tr>
<tr>
<td>V<sub>GS(th)</sub></td>
<td>Gate Threshold Voltage</td>
<td>-1.5</td>
<td>-1</td>
<td>-2</td>
<td>V</td>
</tr>
<tr>
<td>ID<sub>ON</sub></td>
<td>On state drain current</td>
<td>-25</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R<sub>DS(ON)</sub></td>
<td>Static Drain-Source On-Resistance</td>
<td>-10 V, I<sub>B</sub>=-5.5A</td>
<td>32</td>
<td>41</td>
<td>mΩ</td>
</tr>
<tr>
<td>g<sub>F</sub></td>
<td>Forward Transconductance</td>
<td>-5.5V, I<sub>B</sub>=-5.5A</td>
<td>13</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>V<sub>SD</sub></td>
<td>Diode Forward Voltage</td>
<td>-0.76</td>
<td>-0.76</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>r<sub>B</sub></td>
<td>Maximum Body-Diode Continuous Current</td>
<td>-2.5</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STATIC PARAMETERS

- **Input Capacitance**
 - V_{DS}=0V, V_{GS}=15V, f=1MHz
 - 520 pF

- **Output Capacitance**
 - V_{DS}=0V, V_{GS}=15V, f=1MHz
 - 100 pF

- **Reverse Transfer Capacitance**
 - 65 pF

- **Gate resistance**
 - V_{DS}=0V, V_{GS}=±20V
 - 3.5 7.5 11.5 Ω

DYNAMIC PARAMETERS

- **Total Gate Charge**
 - V_{GS}=-10V, V_{DS}=15V, I_B=-5.5A
 - 9.2 11 nC

- **Gate Source Charge**
 - 4.6 6 nC

- **Gate Drain Charge**
 - 1.6 nC

- **Turn-On Delay Time**
 - 2.2 nC

- **Turn-On Rise Time**
 - 7.5 ns

- **Turn-Off Delay Time**
 - 5.5 ns

- **Turn-Off Fall Time**
 - 19 ns

- **Body Diode Reverse Recovery Time**
 - 7 ns

- **Body Diode Reverse Recovery Charge**
 - 11 ns

SWITCHING PARAMETERS

- **Q_{G(10V)}** Total Gate Charge
 - V_{GS}=-10V, V_{DS}=15V, I_B=-5.5A
 - 9.2 11 nC

- **Q_{G(4.5V)}** Total Gate Charge
 - V_{GS}=-10V, V_{DS}=15V, I_B=-5.5A
 - 4.6 6 nC

- **Q_{gs}** Gate Source Charge
 - 1.6 nC

- **Q_{gd}** Gate Drain Charge
 - 2.2 nC

- **Q_{on}** Turn-On Delay Time
 - 7.5 ns

- **Q_{off}** Turn-Off Delay Time
 - 5.5 ns

- **Q<sub.getRuntime</sub>** Turn-Off Fall Time
 - 19 ns

- **Q_{body}** Body Diode Reverse Recovery Charge
 - 11 ns

- **Q_{leak}** Body Diode Reverse Recovery Charge
 - 5.5 10 nC

A. The value of R_{θJA} is measured with the device mounted on 1in x 2in FR-4 board with 2oz. Copper, in a still air environment with T_{Tamb}= 25°C. The value in any given application depends on the user's specific board design.

B. The power dissipation P_D is based on T_{JMAX}= 150°C, using ≤ 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature T_{JMAX}= 150°C. Ratings are based on low frequency and duty cycles to keep initial T_J= 25°C.

D. The R_{θJA} is the sum of the thermal impedence from junction to lead R_{θJL} and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in x 2in FR-4 board with 2oz. Copper, assuming a maximum junction temperature of T_{JMAX}= 150°C. The SOA curve provides a single pulse rating.

Important Note:

- This product has been designed and qualified for the consumer market. Applications or uses as critical components in life support devices or systems are not authorized. AOS does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to improve product design, functions and reliability without notice.

Rev 2: Nov 2011

www.aosmd.com
P-Channel: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics (Note E)

- Fig 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

- Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

- Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

- Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

- Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)

- Figure 6: Body-Diode Characteristics (Note E)
P-Channel: TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

- $V_{DS}=15\text{V}$, $I_D=5.5\text{A}$
- Q_g vs V_{GS}

Figure 8: Capacitance Characteristics

- C_{iss}, C_{oss}, C_{rss}
- $V_{DS}=-15\text{V}$, $I_D=-5.5\text{A}$
- Capacitance vs V_{DS}

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

- $R_{DS(on)}$
- $T_J=150\degree\text{C}$, $T_J=25\degree\text{C}$
- I_D vs V_{DS}

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note F)

- $Z_{\theta JA}$, Normalized Transient Thermal Impedance
- $D=T_{on}/T_{PK}$, $T_{on}=P_{DM}Z_{\theta JA}R_{th JA}$
- $R_{th JA}=90\degree\text{C/W}$
- $T_{on}=10\mu\text{s}$, 1ms, 10ms, 10s
- P_{D} vs V_{DS}, T_{on}

In descending order

- $D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01$, single pulse

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

- $Z_{\theta JA}$ vs P_{D}, T_{on}

Rev 2: Nov 2011 www.aosmd.com Page 8 of 9