General Description

- Trench Power MOSFET - AlphaSGT™ technology
- Low $R_{\text{DS(ON)}}$
- Excellent Gate Charge x $R_{\text{DS(ON)}}$ Product (FOM)
- RoHS and Halogen-Free Compliant

Product Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DS}</td>
<td></td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>I_{D} (at $V_{\text{GS}}=10\text{V}$)</td>
<td>I_{D}</td>
<td>140</td>
<td>A</td>
</tr>
<tr>
<td>$R_{\text{DS(ON)}}$ (at $V_{\text{GS}}=10\text{V}$)</td>
<td>$R_{\text{DS(ON)}}$</td>
<td>< 3.2mΩ</td>
<td></td>
</tr>
<tr>
<td>$R_{\text{DS(ON)}}$ (at $V_{\text{GS}}=6\text{V}$)</td>
<td>$R_{\text{DS(ON)}}$</td>
<td>< 4.6mΩ</td>
<td></td>
</tr>
</tbody>
</table>

Applications

- Synchronous Rectification in DC/DC and AC/DC Converters
- Industrial and Motor Drive applications

Orderable Part Number | Package Type | Form | Minimum Order Quantity
AOT66616L | TO-220 | Tube | 1000
AOB66616L | TO-263 | Tape & Reel | 800

Absolute Maximum Ratings $T_{\text{A}}=25\text{°C}$ unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current a</td>
<td>I_{D} ($T_{\text{C}}=25\text{°C}$)</td>
<td>140</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>I_{D} ($T_{\text{C}}=100\text{°C}$)</td>
<td>95</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Drain Current c</td>
<td>I_{DM}</td>
<td>330</td>
<td>A</td>
</tr>
<tr>
<td>Continuous Drain Current c</td>
<td>I_{DSM} ($T_{\text{A}}=25\text{°C}$)</td>
<td>38.5</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>I_{DSM} ($T_{\text{A}}=70\text{°C}$)</td>
<td>30.5</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche Current c</td>
<td>I_{AS}</td>
<td>35</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche energy</td>
<td>E_{AS} ($L=0.3\text{mH}$)</td>
<td>184</td>
<td>mJ</td>
</tr>
<tr>
<td>Power Dissipation b</td>
<td>P_{D} ($T_{\text{C}}=25\text{°C}$)</td>
<td>125</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>P_{D} ($T_{\text{C}}=100\text{°C}$)</td>
<td>50</td>
<td>W</td>
</tr>
<tr>
<td>Power Dissipation a</td>
<td>P_{DSM} ($T_{\text{A}}=25\text{°C}$)</td>
<td>8.3</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td>P_{DSM} ($T_{\text{A}}=70\text{°C}$)</td>
<td>5.3</td>
<td>W</td>
</tr>
<tr>
<td>Junction and Storage Temperature Range</td>
<td>T_{J}, T_{STG}</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient a</td>
<td>R_{UA}</td>
<td>12</td>
<td>15</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Ambient b</td>
<td>Steady-State</td>
<td>50</td>
<td>60</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Case</td>
<td>Steady-State</td>
<td>0.8</td>
<td>1.0</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Electrical Characteristics (T_J=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_V \text{DSS})</td>
<td>Drain-Source Breakdown Voltage</td>
<td>(I_D=250\mu A, V_{GS}=0)</td>
<td>60</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{DSS})</td>
<td>Zero Gate Voltage Drain Current</td>
<td>(V_{DS}=60V, V_{GS}=0)</td>
<td></td>
<td></td>
<td></td>
<td>(\mu A)</td>
</tr>
<tr>
<td>(I_{GS})</td>
<td>Gate-Body leakage current</td>
<td>(V_{DS}=0V, V_{GS}=\pm 20V)</td>
<td></td>
<td>(\pm 100)</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>(V_{GS(th)})</td>
<td>Gate Threshold Voltage</td>
<td>(V_{DS}=V_{GS}, I_D=250\mu A)</td>
<td>2.4</td>
<td>2.9</td>
<td>3.4</td>
<td>V</td>
</tr>
<tr>
<td>(R_{DS(on)})</td>
<td>Static Drain-Source On-Resistance</td>
<td>(V_{GS}=10V, I_D=20A)</td>
<td>2.5</td>
<td>3.2</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{GS}=6V, I_D=20A)</td>
<td>3.4</td>
<td>4.6</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>(g_{fs})</td>
<td>Forward Transconductance</td>
<td>(V_{DS}=5V, I_D=20A)</td>
<td>100</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>(I_{SD})</td>
<td>Diode Forward Voltage</td>
<td>(I_D=1A, V_{GS}=0)</td>
<td>0.7</td>
<td>1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(I_{gs})</td>
<td>Maximum Body-Diode Continuous Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>135 A</td>
</tr>
</tbody>
</table>

STATIC PARAMETERS

- **Input Capacitance**
 - \(C_{iss}\): 2870 pF
- **Output Capacitance**
 - \(C_{oss}\): 940 pF
- **Reverse Transfer Capacitance**
 - \(C_{rss}\): 38 pF
- **Gate resistance**
 - \(R_{g}\): 0.6 μΩ, 1.25 μΩ, 1.9 μΩ

DYNAMIC PARAMETERS

- **Total Gate Charge**
 - \(Q_{G(10V)}\): 42.5 nC, 60 nC
- **Gate Source Charge**
 - \(Q_{gs}\): 12 nC
- **Gate Drain Charge**
 - \(Q_{gd}\): 10 nC
- **Output Charge**
 - \(Q_{oss}\): 54 nC
- **Turn-On Delay Time**
 - \(t_{D(on)}\): 14.5 ns
- **Turn-On Rise Time**
 - \(t_{r}\): 15.5 ns
- **Turn-Off Delay Time**
 - \(t_{D(off)}\): 33 ns
- **Turn-Off Fall Time**
 - \(t_{f}\): 12.5 ns
- **Body Diode Reverse Recovery Time**
 - \(t_{rr}\): 26 ns
- **Body Diode Reverse Recovery Charge**
 - \(Q_{rr}\): 87 nC

SWITCHING PARAMETERS

- **Gate Source Charge**
 - \(Q_{gs}\): 12 nC
- **Gate Drain Charge**
 - \(Q_{gd}\): 10 nC
- **Output Charge**
 - \(Q_{oss}\): 54 nC
- **Turn-On Delay Time**
 - \(t_{D(on)}\): 14.5 ns
- **Turn-On Rise Time**
 - \(t_{r}\): 15.5 ns
- **Turn-Off Delay Time**
 - \(t_{D(off)}\): 33 ns
- **Turn-Off Fall Time**
 - \(t_{f}\): 12.5 ns
- **Body Diode Reverse Recovery Time**
 - \(t_{rr}\): 26 ns
- **Body Diode Reverse Recovery Charge**
 - \(Q_{rr}\): 87 nC

Notes

- A. The value of \(R_{q(\text{JA})}\) is measured with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with \(T_A=25°C\). The Power dissipation \(P_{DSM}\) is based on \(R_{q(\text{JA})}\leq 10s\) and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.
- B. The power dissipation \(P_D\) is based on \(T_{J(MAX)}=150°C\), using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- C. Single pulse width limited by junction temperature \(T_{J(MAX)}\leq 150°C\).
- D. The \(R_{q(\text{JA})}\) is the sum of the thermal impedance from junction to case \(R_{q(\text{JC})}\) and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of \(T_{J(MAX)}\leq 150°C\). The SOA curve provides a single pulse rating.
- G. The maximum current rating is package limited.
- H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with \(T_A=25°C\).

APPLICATIONS OR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Power De-rating (Note F)

- Power Dissipation (W)
- T_{CASE} (°C)

Figure 13: Current De-rating (Note F)

- Current rating I_A (A)
- T_{CASE} (°C)

Figure 14: Coss stored Energy

- E_{oss} (uJ)
- V_{DS} (Volts)

Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

- Power (W)
- P_{DM}
- T_{on}
- Pulse Width (s)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

- Normalized Transient Thermal Resistance
- Z_{qJA}
- Pulse Width (s)

In descending order

$D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01$, single pulse

$D=T_{on}/T$

$T_{on}=T_A+P_{DM}Z_{qJA}R_{JA}$

$R_{JA}=80^\circ$ C/W
Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms