AOCA32301
30V Common-Drain Dual N-Channel MOSFET

General Description
- Trench Power MOSFET technology
- Low R_{DS(ON)}
- ESD protection
- Common drain configuration for design simplicity
- RoHS and Halogen-Free Compliant

Product Summary
- V_{SS} 30V
- R_{DS(ON)} (at V_{GS}=10V) < 18mΩ
- R_{DS(ON)} (at V_{GS}=8V) < 19mΩ
- R_{DS(ON)} (at V_{GS}=4.5V) < 24mΩ

Applications
- Battery protection switch
- Type C - PD load switch

Applications
Typical ESD protection
HBM Class 2

Symbol
V_{SS}
V_{GS}
T_A = 25°C
I_S
I_{SM}
T_A = 25°C
P_B

Parameter
Source-Source Voltage
Gate-Source Voltage
Source Current(DC)
 T_A = 25°C
Source Current(Pulse)
 T_A = 25°C
Power Dissipation
 T_A = 25°C
Junction and Storage Temperature Range

Symbol
V_{SS}
V_{GS}
I_S
I_{SM}
P_B

Rating
30
±16
9
50
1.9
-55 to 150

Units
V
V
A
W
°C

Absolute Maximum Ratings
T_A< 25°C unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Rating</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source-Source Voltage</td>
<td>V<sub>SS</sub></td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V<sub>GS</sub></td>
<td>±16</td>
<td>V</td>
</tr>
<tr>
<td>Source Current(DC) T<sub>A</sub> = 25°C</td>
<td>I<sub>S</sub></td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Source Current(Pulse) T<sub>A</sub> = 25°C</td>
<td>I<sub>SM</sub></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Power Dissipation T<sub>A</sub> = 25°C</td>
<td>P<sub>B</sub></td>
<td>1.9</td>
<td>W</td>
</tr>
<tr>
<td>Junction and Storage Temperature Range</td>
<td>T<sub>JA</sub>, T<sub>STG</sub></td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient ≤ 10s</td>
<td>R<sub>JA</sub></td>
<td>55</td>
</tr>
<tr>
<td>Maximum Junction-to-Ambient Steady-State</td>
<td></td>
<td>65</td>
</tr>
</tbody>
</table>

Note 1. I_S rated value is based on bare silicon. Mounted on 70mm x 70mm FR-4 board.

Note 2. PW < 10 μs pulses, duty cycle 1% max.
Electrical Characteristics (T_J=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV<sub>SSS</sub></td>
<td>Source-Source Breakdown Voltage</td>
<td>I<sub>S</sub>=250μA, V<sub>GS</sub>=0V Test Circuit 6</td>
<td>30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I<sub>SSS</sub></td>
<td>Zero Gate Voltage Source Current</td>
<td>V<sub>GS</sub>=30V, V<sub>GS</sub>=0V Test Circuit 1</td>
<td>1</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I<sub>GSS</sub></td>
<td>Gate leakage current</td>
<td>V<sub>GS</sub>=0V, V<sub>GS</sub>=±16V Test Circuit 2</td>
<td>±10</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>V<sub>GS(th)</sub></td>
<td>Gate Threshold Voltage</td>
<td>V<sub>GS</sub>=V<sub>GS</sub>, I<sub>G</sub>=250μA Test Circuit 3</td>
<td>1.1</td>
<td>1.5</td>
<td>1.9</td>
<td>V</td>
</tr>
<tr>
<td>R<sub>SS(ON)</sub></td>
<td>Static Source to Source On-Resistance</td>
<td>V<sub>GS</sub>=10V, I<sub>G</sub>=4A Test Circuit 4</td>
<td>10</td>
<td>14.5</td>
<td>18</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V<sub>GS</sub>=8V, I<sub>G</sub>=4A Test Circuit 4</td>
<td>11</td>
<td>15.2</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V<sub>GS</sub>=4.5V, I<sub>G</sub>=4A Test Circuit 4</td>
<td>13</td>
<td>18.6</td>
<td>24</td>
</tr>
<tr>
<td>g<sub>fS</sub></td>
<td>Forward Transconductance</td>
<td>V<sub>GS</sub>=5V, I<sub>G</sub>=4A Test Circuit 3</td>
<td>22</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>V<sub>FSS</sub></td>
<td>Forward Source to Source Voltage</td>
<td>I<sub>S</sub>=1A, V<sub>GS</sub>=0V Test Circuit 5</td>
<td>0.7</td>
<td>1</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

STATIC PARAMETERS

DYNAMIC PARAMETERS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R<sub>f</sub></td>
<td>Gate resistance</td>
<td>f=1MHz</td>
<td>1.5 Ω</td>
</tr>
</tbody>
</table>

SWITCHING PARAMETERS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q<sub>g</sub></td>
<td>Total Gate Charge</td>
<td>V<sub>G1S1</sub>=10V, V<sub>GS</sub>=15V, I<sub>G</sub>=4A</td>
<td>24.5 nC</td>
</tr>
<tr>
<td>t<sub>on</sub></td>
<td>Turn-On DelayTime</td>
<td>V<sub>G1S1</sub>=10V, V<sub>GS</sub>=15V, R<sub>L</sub>=3.75Ω, Test Circuit8</td>
<td>9 ns</td>
</tr>
<tr>
<td>t<sub>r</sub></td>
<td>Turn-On Rise Time</td>
<td>V<sub>G1S1</sub>=10V, V<sub>GS</sub>=15V, R<sub>L</sub>=3.75Ω, Test Circuit8</td>
<td>23 ns</td>
</tr>
<tr>
<td>t<sub>off</sub></td>
<td>Turn-Off DelayTime</td>
<td>R<sub>GEN</sub>=3Ω</td>
<td>30.5 ns</td>
</tr>
<tr>
<td>t<sub>f</sub></td>
<td>Turn-Off Fall Time</td>
<td></td>
<td>13 ns</td>
</tr>
</tbody>
</table>

Applications or Uses as Critical Components in Life Support Devices or Systems are Not Authorized. AOS Does Not Assume Any Liability Arising Out of Such Applications or Uses of Its Products. AOS Reserves the Right to Make Changes to Product Specifications Without Notice. It is the Responsibility of the Customer to Evaluate Suitability of the Product for Their Intended Application. Customer Shall Comply with Applicable Legal Requirements, Including All Applicable Export Control Rules, Regulations and Limitations.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at:

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics

Figure 2: Transfer Characteristics

Figure 3: On-Resistance vs. Source Current and Gate Voltage

Figure 4: On-Resistance vs. Junction Temperature

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Forward Source to Source Characteristics
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Maximum Forward Biased Safe Operating Area (Note1)

Figure 9: Single Pulse Power Rating Junction-to-Ambient (Note1)

Figure 10: Normalized Maximum Transient Thermal Impedance (Note1)
When FET1 is measured between GATE and SOURCE of FET2 are shorted

TEST CIRCUIT 1 Iss
POSITIVE VSS FOR ISSS+
NEGATIVE VSS FOR ISSS-

TEST CIRCUIT 2 Igss1,2
POSITIVE VGS FOR IGSS1+
NEGATIVE VGS FOR IGSS1-
When FET1 is measured between GATE and SOURCE of FET2 are shorted

TEST CIRCUIT 3 Vgs(off)
When FET1 is measured between GATE and SOURCE of FET2 are shorted

TEST CIRCUIT 4 Rss(on)

TEST CIRCUIT 5 Vf(1,2)
4.5V
When FET1 measured FET2 VGS<4.5V
VGS=0

TEST CIRCUIT 6 BVoss
POSITIVE VSS FOR ISSS+
NEGATIVE VSS FOR ISSS-

TEST CIRCUIT 7 BVgs1,2
POSITIVE VSS FOR ISSS+
NEGATIVE VSS FOR ISSS-
When FET1 is measured between GATE and SOURCE of FET2 are shorted

TEST CIRCUIT 8 Switching time