AOD2610E/AOI2610E/AOY2610E
60V N-Channel AlphaSGT™

General Description
- Trench Power AlphaSGT™ technology
- Low R_{DSON}
- Low Gate Charge
- Low Eoss
- ESD protected
- RoHS and Halogen-Free Compliant

Applications
- High efficiency power supply
- Secondary synchronous rectifier

Product Summary
- V_{DS} 60V
- I_D (at $V_{GS}=10V$) 46A
- R_{DSON} (at $V_{GS}=10V$) $< 9.5mΩ$
- R_{DSON} (at $V_{GS}=4.5V$) $< 13.3mΩ$

Typical ESD protection
- HBM Class 2
- 100% UIS Tested
- 100% Rg Tested

Applications
- High efficiency power supply
- Secondary synchronous rectifier

Absolute Maximum Ratings $T_A=25°C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>60</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current a</td>
<td>I_D</td>
<td>46</td>
<td>A</td>
</tr>
<tr>
<td>$T_A=25°C$, $T_C=100°C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulsed Drain Current c</td>
<td>I_{DM}</td>
<td>110</td>
<td>A</td>
</tr>
<tr>
<td>Continuous Drain Current a</td>
<td>I_{DSSM}</td>
<td>19</td>
<td>A</td>
</tr>
<tr>
<td>$T_A=25°C$, $T_C=70°C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avalanche Current c</td>
<td>I_{AS}</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche energy</td>
<td>E_{AB}</td>
<td>43</td>
<td>mJ</td>
</tr>
<tr>
<td>V_{DS} Spike</td>
<td>V_{SPIKE}</td>
<td>10µs</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation b</td>
<td>P_D</td>
<td>59.5</td>
<td>W</td>
</tr>
<tr>
<td>$T_A=25°C$, $T_C=100°C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation a</td>
<td>P_{DSSM}</td>
<td>6.2</td>
<td>W</td>
</tr>
<tr>
<td>$T_A=25°C$, $T_C=70°C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction and Storage Temperature Range</td>
<td>T_J, T_{STG}</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient a</td>
<td>R_{UA}</td>
<td>15</td>
<td>20</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Case a</td>
<td>R_{UJC}</td>
<td>1.7</td>
<td>2.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Ambient b Steady-State</td>
<td></td>
<td>40</td>
<td>50</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Case Steady-State</td>
<td></td>
<td>40</td>
<td>50</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Electrical Characteristics (T_J=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV<sub>DSS</sub></td>
<td>Drain-Source Breakdown Voltage</td>
<td>I<sub>P</sub>=250μA, V<sub>GS</sub>=0V</td>
<td>60</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>IDS</td>
<td>Zero Gate Voltage Drain Current</td>
<td>V<sub>DS</sub>=60V, V<sub>GS</sub>=0V</td>
<td></td>
<td>1</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>IDSS</td>
<td>Gate-Body leakage current</td>
<td>V<sub>DS</sub>=0V, V<sub>GS</sub>±20V</td>
<td></td>
<td>±10</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>VGS(th)</td>
<td>Gate Threshold Voltage</td>
<td>V<sub>DS</sub>=V<sub>GS</sub>, I<sub>D</sub>=250μA</td>
<td>1.4</td>
<td>1.8</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>RDS(ON)</td>
<td>Static Drain-Source On-Resistance</td>
<td>V<sub>GS</sub>=10V, I<sub>D</sub>=20A</td>
<td></td>
<td>7.7</td>
<td>9.5</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>GS</sub>=4.5V, I<sub>D</sub>=20A</td>
<td></td>
<td>12.5</td>
<td>15.5</td>
<td>mΩ</td>
</tr>
<tr>
<td>gFS</td>
<td>Forward Transconductance</td>
<td>V<sub>DS</sub>=5V, I<sub>D</sub>=20A</td>
<td></td>
<td>52</td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>VSD</td>
<td>Diode Forward Voltage</td>
<td>I<sub>DS</sub>=1A, V<sub>GS</sub>=0V</td>
<td></td>
<td>0.72</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>IS</td>
<td>Maximum Body-Diode Continuous Current</td>
<td></td>
<td></td>
<td>46</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DYNAMIC PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciss</td>
<td>Input Capacitance</td>
<td>V<sub>GS</sub>=0V, V<sub>DS</sub>=30V, f=1MHz</td>
<td></td>
<td>1100</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>COSS</td>
<td>Output Capacitance</td>
<td></td>
<td></td>
<td>300</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>CGS</td>
<td>Reverse Transfer Capacitance</td>
<td></td>
<td></td>
<td>28</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>R<sub>g</sub></td>
<td>Gate resistance</td>
<td>f=1MHz</td>
<td></td>
<td>0.6</td>
<td>1.2</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWITCHING PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qg(10V)</td>
<td>Total Gate Charge</td>
<td>V<sub>GS</sub>=10V, V<sub>DS</sub>=30V, I<sub>D</sub>=20A</td>
<td></td>
<td>14.5</td>
<td>25</td>
<td>nC</td>
</tr>
<tr>
<td>Qg(4.5V)</td>
<td>Total Gate Charge</td>
<td>V<sub>GS</sub>=10V, V<sub>DS</sub>=30V, I<sub>D</sub>=20A</td>
<td></td>
<td>7</td>
<td>13</td>
<td>nC</td>
</tr>
<tr>
<td>QGD</td>
<td>Gate Source Charge</td>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>QGD</td>
<td>Gate Drain Charge</td>
<td></td>
<td></td>
<td>3.5</td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>t<sub>Q门槛</sub></td>
<td>Turn-On DelayTime</td>
<td></td>
<td></td>
<td>6.5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>QUT</sub></td>
<td>Turn-On Rise Time</td>
<td>V<sub>GS</sub>=10V, V<sub>DS</sub>=30V, R<sub>L</sub>=1.5Ω</td>
<td></td>
<td>3.5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>QDAT</sub></td>
<td>Turn-Off DelayTime</td>
<td>R<sub>GEN</sub>=3Ω</td>
<td></td>
<td>22</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>f</sub></td>
<td>Turn-Off Fall Time</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>QR</sub></td>
<td>Body Diode Reverse Recovery Time</td>
<td>I<sub>DS</sub>=20A, di/dt=500A/μs</td>
<td></td>
<td>19</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Qf<sub>RR</sub></td>
<td>Body Diode Reverse Recovery Charge</td>
<td>I<sub>DS</sub>=20A, di/dt=500A/μs</td>
<td></td>
<td>65</td>
<td></td>
<td>nC</td>
</tr>
</tbody>
</table>

A. The value of R_{qJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The Power dissipation P_{DSM} is based on R_{qJA} t≤ 10s and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.

B. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature T_{J(MAX)}=150°C.

D. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C.

I. The spike duty cycle 5% max, limited by junction temperature T_{J(MAX)}=125°C.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Power De-rating (Note F)

Figure 13: Current De-rating (Note F)

Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note H)

Figure 15: Normalized Maximum Transient Thermal Impedance (Note H)
Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms