General Description

The AON6280 uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$, C_{iss}, and C_{oss}. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.

Product Summary

- V_{DS}: 80V
- I_{D} (at $V_{\text{GS}}=10V$): 85A
- $R_{\text{DS(ON)}}$ (at $V_{\text{GS}}=10V$): < 4.1mΩ
- $R_{\text{DS(ON)}}$ (at $V_{\text{GS}}=6V$): < 5.0mΩ

100% UIS Tested
100% R_{g} Tested

The AON6280 uses trench MOSFET technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$, C_{iss}, and C_{oss}. This device is ideal for boost converters and synchronous rectifiers for consumer, telecom, industrial power supplies and LED backlighting.

Absolute Maximum Ratings $T_{A}=25°C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>80</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current $T_{C}=25°C$</td>
<td>I_{D}</td>
<td>100</td>
<td>A</td>
</tr>
<tr>
<td>$T_{C}=100°C$</td>
<td>I_{D}</td>
<td>65</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Drain Current $T_{A}=25°C$</td>
<td>I_{D}</td>
<td>230</td>
<td>A</td>
</tr>
<tr>
<td>$T_{A}=100°C$</td>
<td>I_{D}</td>
<td>17</td>
<td>A</td>
</tr>
<tr>
<td>Continuous Drain Current $T_{A}=70°C$</td>
<td>I_{D}</td>
<td>13</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche Current $T_{A}=25°C$</td>
<td>I_{AS}</td>
<td>50</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche energy $L=0.1\text{mH}$</td>
<td>E_{AS}</td>
<td>125</td>
<td>mJ</td>
</tr>
<tr>
<td>Power Dissipation $T_{A}=25°C$</td>
<td>P_{D}</td>
<td>83</td>
<td>W</td>
</tr>
<tr>
<td>$T_{A}=100°C$</td>
<td>P_{D}</td>
<td>33</td>
<td>W</td>
</tr>
<tr>
<td>Power Dissipation $T_{A}=70°C$</td>
<td>P_{D}</td>
<td>7.3</td>
<td>W</td>
</tr>
<tr>
<td>Junction and Storage Temperature Range</td>
<td>T_{J}</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient $T_{A}=25°C$</td>
<td>R_{JA}</td>
<td>14</td>
<td>17</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Ambient $T_{A}=100°C$</td>
<td>R_{JA}</td>
<td>40</td>
<td>55</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Case Steady-State</td>
<td>R_{JC}</td>
<td>1</td>
<td>1.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Electrical Characteristics (T_J=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV<sub>DSS</sub></td>
<td>Drain-Source Breakdown Voltage</td>
<td>I<sub>b</sub>=250μA, V<sub>GS</sub>=0V</td>
<td>80</td>
<td>1</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>IDSS</td>
<td>Zero Gate Voltage Drain Current</td>
<td>V<sub>DS</sub>=80V, V<sub>GS</sub>=0V</td>
<td>1</td>
<td>5</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>IDSS</td>
<td>Gate-Body leakage current</td>
<td>V<sub>DS</sub>=0V, V<sub>GS</sub>=±20V</td>
<td>±100</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>GS(th)</sub></td>
<td>Gate Threshold Voltage</td>
<td>V<sub>DS</sub>=V<sub>GS</sub>, I<sub>b</sub>=250μA</td>
<td>2.6</td>
<td>3.2</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>ID<sub>ON</sub></td>
<td>On state drain current</td>
<td>V<sub>GS</sub>=10V, V<sub>DS</sub>=5V</td>
<td>230</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R<sub>DS(ON)</sub></td>
<td>Static Drain-Source On-Resistance</td>
<td>V<sub>GS</sub>=10V, I<sub>DS</sub>=20A</td>
<td>5.8</td>
<td>7</td>
<td>mΩ</td>
<td></td>
</tr>
<tr>
<td>g<sub>FS</sub></td>
<td>Forward Transconductance</td>
<td>V<sub>DS</sub>=5V, I<sub>b</sub>=20A</td>
<td>76</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V<sub>SD</sub></td>
<td>Diode Forward Voltage</td>
<td>I<sub>b</sub>=1A, V<sub>GS</sub>=0V</td>
<td>1</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IS</td>
<td>Maximum Body-Diode Continuous Current</td>
<td></td>
<td>95</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STATIC PARAMETERS

- **A.** The value of R_{q JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The Power dissipation P_{DSM} is based on R_{q JA} and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user’s specific board design.
- **B.** The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- **C.** Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C. Ratings are based on low frequency and duty cycles to keep initial T_J=25°C.
- **D.** The R_{q JA} is the sum of the thermal impedence from junction to case R_{q JC} and case to ambient.
- **E.** The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.
- **F.** These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse rating.
- **G.** These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C.

DYNAMIC PARAMETERS

- **C_{gs}** | Input Capacitance | V_{GS}=0V, V_{DS}=40V, f=1MHz | 3930 | pF |
- **C_{oss}** | Output Capacitance | V_{GS}=0V, f=1MHz | 592 | pF |
- **C_{iss}** | Reverse Transfer Capacitance | | 66 | pF |
- **R_g** | Gate resistance | V_{GS}=0V, V_{DS}=0V, f=1MHz | 0.3 | 0.7 | 1.1 | Ω |

SWITCHING PARAMETERS

- **Q_g** | Total Gate Charge | V_{GS}=10V, V_{DS}=40V, I_b=20A | 58 | 82 | nC |
- **Q_{gs}** | Gate Source Charge | V_{GS}=10V, V_{DS}=40V, I_b=20A | 15 | nC |
- **Q_{gd}** | Gate Drain Charge | V_{GS}=10V, V_{DS}=40V, R_L=2Ω | 14 | nC |
- **t_{d(on)}** | Turn-On Delay Time | | 13 | ns |
- **t_r** | Turn-On Rise Time | V_{GS}=10V, V_{DS}=40V, R_L=2Ω | 6 | ns |
- **t_{d(off)}** | Turn-Off Delay Time | R_{GEN}=3Ω | 32 | ns |
- **t_f** | Turn-Off Fall Time | | 9 | ns |
- **t_{rr}** | Body Diode Reverse Recovery Time | I_b=20A, dI/dt=500A/μs | 36 | ns |
- **Q_{rr}** | Body Diode Reverse Recovery Charge | I_b=20A, dI/dt=500A/μs | 153 | nC |

A. The value of R_{q JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The Power dissipation P_{DSM} is based on R_{q JA} and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user’s specific board design.

B. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C. Ratings are based on low frequency and duty cycles to keep initial T_J=25°C.

D. The R_{q JA} is the sum of the thermal impedence from junction to case R_{q JC} and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse rating.

G. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C.

APPLIcATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS’ products are provided subject to AOS’ terms and conditions of sale which are set forth at:

http://www.aosmd.com/terms_and_conditions_of_sale
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Single Pulse Avalanche capability (Note C)

Figure 13: Power De-rating (Note F)

Figure 14: Current De-rating (Note F)

Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note G)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note G)
Gate Charge Test Circuit & Waveform

![Gate Charge Test Circuit](image1)

Resistive Switching Test Circuit & Waveforms

![Resistive Switching Test Circuit](image2)

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

![Unclamped Inductive Switching Test Circuit](image3)

Diode Recovery Test Circuit & Waveforms

![Diode Recovery Test Circuit](image4)