AON6884
40V Dual N-Channel MOSFET

General Description

The AON6884 uses advanced trench technology to provide excellent $R_{DS(ON)}$ with low gate charge. This is an all purpose device that is suitable for use in a wide range of power conversion applications.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current</td>
<td>I_D</td>
<td>34</td>
<td>A</td>
</tr>
<tr>
<td>Current $T_C=25^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current $T_C=100^\circ C$</td>
<td></td>
<td>21</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Drain Current</td>
<td>I_{DM}</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Continuous Drain Current</td>
<td>I_{DSM}</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Current $T_A=25^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current $T_A=70^\circ C$</td>
<td></td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche Current</td>
<td>I_{AS}, I_{AR}</td>
<td>35</td>
<td>A</td>
</tr>
<tr>
<td>avalanche energy $L=0.1mH$</td>
<td>E_{AS}, E_{AR}</td>
<td>61</td>
<td>mJ</td>
</tr>
<tr>
<td>Power Dissipation B</td>
<td>P_D</td>
<td>21</td>
<td>W</td>
</tr>
<tr>
<td>Current $T_C=25^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current $T_C=100^\circ C$</td>
<td></td>
<td>8</td>
<td>W</td>
</tr>
<tr>
<td>Power Dissipation A</td>
<td>P_{DSM}</td>
<td>1.6</td>
<td>W</td>
</tr>
<tr>
<td>Current $T_A=25^\circ C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current $T_A=70^\circ C$</td>
<td></td>
<td>1</td>
<td>W</td>
</tr>
<tr>
<td>Junction and Storage Temperature Range</td>
<td>T_J, T_{STG}</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Product Summary

- V_{DS}: 40V
- I_D (at $V_{GS}=10V$): 34A
- $R_{DS(ON)}$ (at $V_{GS}=10V$): < 11.3mΩ
- $R_{DS(ON)}$ (at $V_{GS} = 4.5V$): < 13.8mΩ

100% UIS Tested
100% R_g Tested
Electrical Characteristics (T_{j}=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV_{DSS}</td>
<td>Drain-Source Breakdown Voltage</td>
<td>I_D=250µA, V_GS=0V</td>
<td>40</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{RSS}</td>
<td>Zero Gate Voltage Drain Current</td>
<td>V_DS=40V, V_GS=0V</td>
<td></td>
<td>1</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{GSS}</td>
<td>Gate-Body leakage current</td>
<td>V_DS=0V, V_GS=±20V</td>
<td></td>
<td>±100</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>V_{GS(th)}</td>
<td>Gate Threshold Voltage</td>
<td>V_DS=V_GS, I_D=250µA</td>
<td>1.55</td>
<td>2.1</td>
<td>2.7</td>
<td>V</td>
</tr>
<tr>
<td>I_{D(ON)}</td>
<td>On state drain current</td>
<td>V_DS=10V, V_GS=5V</td>
<td>120</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>R_{DS(ON)}</td>
<td>Static Drain-Source On-Resistance</td>
<td>V_GS=10V, I_D=10A</td>
<td>9.4</td>
<td>11.3</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_GS=4.5V, I_D=10A</td>
<td></td>
<td>14</td>
<td>17</td>
<td>mΩ</td>
</tr>
<tr>
<td>g_{FS}</td>
<td>Forward Transconductance</td>
<td>V_DS=5V, I_D=10A</td>
<td>50</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>V_{SD}</td>
<td>Diode Forward Voltage</td>
<td>I_S=1A, V_GS=0V</td>
<td>0.7</td>
<td>1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{s}</td>
<td>Maximum Body-Diode Continuous Current</td>
<td></td>
<td>25</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>DYNAMIC PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{gs}</td>
<td>Input Capacitance</td>
<td>V_GS=0V, V_DS=20V, f=1MHz</td>
<td>1200</td>
<td>1500</td>
<td>1950</td>
<td>pF</td>
</tr>
<tr>
<td>C_{oss}</td>
<td>Output Capacitance</td>
<td></td>
<td>150</td>
<td>215</td>
<td>280</td>
<td>pF</td>
</tr>
<tr>
<td>C_{rss}</td>
<td>Reverse Transfer Capacitance</td>
<td></td>
<td>80</td>
<td>135</td>
<td>190</td>
<td>pF</td>
</tr>
<tr>
<td>R_{g}</td>
<td>Gate resistance</td>
<td>V_GS=0V, V_DS=0V, f=1MHz</td>
<td>1.7</td>
<td>3.5</td>
<td>5.3</td>
<td>Ω</td>
</tr>
<tr>
<td>SWITCHING PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q_{g}(10V)</td>
<td>Total Gate Charge</td>
<td>V_GS=10V, V_DS=20V, I_D=10A</td>
<td>22</td>
<td>27.2</td>
<td>33</td>
<td>nC</td>
</tr>
<tr>
<td>Q_{g}(4.5V)</td>
<td>Total Gate Charge</td>
<td></td>
<td>10</td>
<td>13.6</td>
<td>16</td>
<td>nC</td>
</tr>
<tr>
<td>Q_{gs}</td>
<td>Gate Source Charge</td>
<td></td>
<td>3.6</td>
<td>4.5</td>
<td>5.4</td>
<td>nC</td>
</tr>
<tr>
<td>Q_{gd}</td>
<td>Gate Drain Charge</td>
<td></td>
<td>3.8</td>
<td>6.4</td>
<td>9</td>
<td>nC</td>
</tr>
<tr>
<td>t_{(ON)}</td>
<td>Turn-On Delay Time</td>
<td>V_GS=10V, V_DS=20V</td>
<td>6.4</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{(off)}</td>
<td>Turn-Off Delay Time</td>
<td></td>
<td>17.2</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{r}</td>
<td>Turn-Off Fall Time</td>
<td>R_{GEN}=3Ω</td>
<td>29.6</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_{rr}</td>
<td>Body Diode Reverse Recovery Time</td>
<td>I_F=10A, dl/dt=500µA/µs</td>
<td>16.8</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Q_{tr}</td>
<td>Body Diode Reverse Recovery Charge</td>
<td>I_F=10A, dl/dt=500µA/µs</td>
<td>25</td>
<td>35</td>
<td>45</td>
<td>nC</td>
</tr>
</tbody>
</table>

A. The value of R_{θJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_{A}=25°C. The Power dissipation P_{DSM} is based on R_{θJA} and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user’s specific board design.

B. The power dissipation P_{D} is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C. Ratings are based on low frequency and duty cycles to keep initial T_{J}=25°C.

D. The R_{θJA} is the sum of the thermal impedance from junction to case R_{θJC} and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse rating.

G. The maximum current rating is limited by bond-wires.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_{A}=25°C.

This product has been designed and qualified for the consumer market. Applications or uses as critical components in life support devices or systems are not authorized. AOS does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to improve product design, functions and reliability without notice.
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

- **Figure 1:** On-Region Characteristics (Note E)
- **Figure 2:** Transfer Characteristics (Note E)
- **Figure 3:** On-Resistance vs. Drain Current and Gate Voltage (Note E)
- **Figure 4:** On-Resistance vs. Junction Temperature (Note E)
- **Figure 5:** On-Resistance vs. Gate-Source Voltage (Note E)
- **Figure 6:** Body-Diode Characteristics (Note E)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Single Pulse Avalanche capability (Note C)

Figure 13: Power De-rating (Note F)

Figure 14: Current De-rating (Note F)

Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)