General Description

- Latest Trench Power AlphaMOS (αMOS MV) technology
- Very Low $R_{DS(ON)}$
- Low Gate Charge
- Optimized for fast-switching applications
- RoHS and Halogen-Free Compliant

Product Summary

- V_{DS}: 100V
- I_D (at $V_{DS}=10V$): 23A
- $R_{DS(ON)}$ (at $V_{DS}=10V$): < 24mΩ
- $R_{DS(ON)}$ (at $V_{DS}=4.5V$): < 32mΩ

Application

- Synchronous rectification in DC/DC and AC/DC converters
- Isolated DC/DC Converters in Telecom and Industrial

Orderable Part Number

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Package Type</th>
<th>Form</th>
<th>Minimum Order Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>AON7292</td>
<td>DFN 3.3x3.3</td>
<td>Tape & Reel</td>
<td>3000</td>
</tr>
</tbody>
</table>

Absolute Maximum Ratings $T_J=25$°C unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>100</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>≤20</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current $T_J=25$°C</td>
<td>I_D</td>
<td>23</td>
<td>A</td>
</tr>
<tr>
<td>Current $T_J=100$°C</td>
<td>I_D</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Drain Current</td>
<td>R_{SM}</td>
<td>45</td>
<td>A</td>
</tr>
<tr>
<td>Continuous Drain Current $T_J=25$°C</td>
<td>I_{DSM}</td>
<td>9</td>
<td>A</td>
</tr>
<tr>
<td>Current $T_J=70$°C</td>
<td>I_{DSM}</td>
<td>7</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche Current $T_J=70$°C</td>
<td>I_{AS}</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche energy $L=0.1mH$</td>
<td>E_{AS}</td>
<td>10</td>
<td>nJ</td>
</tr>
<tr>
<td>V_{DS} Spike 10µs</td>
<td>V_{SPIKE}</td>
<td>120</td>
<td>V</td>
</tr>
<tr>
<td>Power Dissipation $T_J=25$°C</td>
<td>P_D</td>
<td>28</td>
<td>W</td>
</tr>
<tr>
<td>Current $T_J=100$°C</td>
<td>P_D</td>
<td>11</td>
<td>W</td>
</tr>
<tr>
<td>Power Dissipation $T_J=25$°C</td>
<td>P_{Diss}</td>
<td>4.1</td>
<td>W</td>
</tr>
<tr>
<td>Current $T_J=70$°C</td>
<td>P_{Diss}</td>
<td>2.6</td>
<td>W</td>
</tr>
<tr>
<td>Junction and Storage Temperature Range</td>
<td>T_J, T_{STG}</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient S ≤10s</td>
<td>R_{JA}</td>
<td>25</td>
<td>30</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Ambient AS</td>
<td>R_{JC}</td>
<td>50</td>
<td>60</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Case Steady-State</td>
<td>R_{JC}</td>
<td>3.7</td>
<td>4.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

[Image]
Electrical Characteristics (T_J=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV<sub>DS</sub></td>
<td>Drain-Source Breakdown Voltage</td>
<td>I<sub>D</sub>=250µA, V<sub>GS</sub>=0V</td>
<td>100</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>IDSS</td>
<td>Zero Gate Voltage Drain Current</td>
<td>V<sub>DS</sub>=100V, V<sub>GS</sub>=0V</td>
<td>1</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>IDSS</td>
<td>Gate-Body leakage current</td>
<td>V<sub>DS</sub>=0V, V<sub>GS</sub>=±20V</td>
<td>±100</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>VGS(h)</td>
<td>Gate Threshold Voltage</td>
<td>V<sub>DS</sub>=V<sub>GS</sub>, I<sub>D</sub>=250µA</td>
<td>1.6</td>
<td>2.1</td>
<td>2.6</td>
<td>V</td>
</tr>
<tr>
<td>R<sub>DS(ON)</sub></td>
<td>Static Drain-Source On-Resistance</td>
<td>V<sub>GS</sub>=10V, I<sub>G</sub>=9A</td>
<td>20</td>
<td>24</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>DS</sub>=4.5V, I<sub>G</sub>=7A</td>
<td>25.5</td>
<td>32</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>GS</td>
<td>Forward Transconductance</td>
<td>V<sub>DS</sub>=5V, I<sub>D</sub>=9A</td>
<td>32</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>VGSD</td>
<td>Diode Forward Voltage</td>
<td>I<sub>F</sub>=1A, V<sub>GS</sub>=0V</td>
<td>0.72</td>
<td>1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>fs</td>
<td>Maximum Body-Diode Continuous Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>DYNAMIC PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CGS</td>
<td>Input Capacitance</td>
<td>V<sub>GS</sub>=0V, V<sub>DS</sub>=50V, f=1MHz</td>
<td>1170</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Coss</td>
<td>Output Capacitance</td>
<td></td>
<td>90</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Coss</td>
<td>Reverse Transfer Capacitance</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>R<sub>d</sub></td>
<td>Gate resistance</td>
<td>f=1MHz</td>
<td>0.3</td>
<td>0.65</td>
<td>1.0</td>
<td>Ω</td>
</tr>
<tr>
<td>SWITCHING PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QG(10V)</td>
<td>Total Gate Charge</td>
<td>V<sub>GS</sub>=10V, V<sub>DS</sub>=50V, I<sub>G</sub>=9A</td>
<td>17</td>
<td>25</td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>QG(4.5V)</td>
<td>Total Gate Charge</td>
<td>V<sub>GS</sub>=10V, V<sub>DS</sub>=50V, I<sub>G</sub>=9A</td>
<td>8</td>
<td>15</td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Qg</td>
<td>Gate Source Charge</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Qgd</td>
<td>Gate Drain Charge</td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>t<sub>on</sub></td>
<td>Turn-On DelayTime</td>
<td>V<sub>GS</sub>=10V, V<sub>DS</sub>=50V, R<sub>L</sub>=5.55Ω,</td>
<td>5</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>rr</sub></td>
<td>Turn-On Rise Time</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>off</sub></td>
<td>Turn-Off DelayTime</td>
<td>R<sub>GEN</sub>=3Ω</td>
<td>21</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>f</sub></td>
<td>Turn-Off Fall Time</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>d</sub></td>
<td>Body Diode Reverse Recovery Time</td>
<td>I<sub>D</sub>=9A, dI/dt=500A/µs</td>
<td>24</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>Q</sub></td>
<td>Body Diode Reverse Recovery Charge</td>
<td>I<sub>D</sub>=9A, dI/dt=500A/µs</td>
<td>110</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
</tbody>
</table>

A. The value of R_{θJA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The Power dissipation P_{DSM} is based on R_{θJA}_≤10s and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user’s specific board design.

B. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature T_{J(MAX)}=150°C.

D. The R_{θJA} is the sum of the thermal impedance from junction to case R_{θJC} and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C.
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Power De-rating (Note F)

Figure 13: Current De-rating (Note F)

Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note H)

Figure 15: Normalized Maximum Transient Thermal Impedance (Note H)
Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

E_{AR} = \frac{1}{2} L \frac{dI}{dt}

Q_{on} = \int I_{on} dt

AR

V_{dd}