General Description

- Trench Power AlphaMOS (αMOS LV) technology
- Low $R_{DS(ON)}$
- Optimized for load switch
- High Current Capability
- ESD protected
- RoHS and Halogen-Free Compliant

Applications

- NB Battery Pack

Product Summary

- V_{DS}: 30V
- I_{D} (at V_{GS}=10V): 34A
- $R_{DS(ON)}$ (at V_{GS}=10V): $< 3.7 \text{mΩ}$
- $R_{DS(ON)}$ (at V_{GS}=4.5V): $< 5.2 \text{mΩ}$

- Typical ESD protection: HBM Class 2
- 100% UIS Tested
- 100% R_g Tested

Orderable Part Number: AON7566

Package Type: DFN 3x3 EP

Form: Tape & Reel

Minimum Order Quantity: 5000

Absolute Maximum Ratings $T_A=25\degree C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>30</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current A</td>
<td>I_D, $I_{D(SM)}$</td>
<td>34</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Drain Current C</td>
<td>I_{DSM}</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Avalanche Current C</td>
<td>I_{AS}</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche energy C</td>
<td>E_{AS}</td>
<td>45</td>
<td>mJ</td>
</tr>
<tr>
<td>V_{DS} Spike</td>
<td>10µs</td>
<td>V_{SPIKE}</td>
<td>36</td>
</tr>
<tr>
<td>Power Dissipation B</td>
<td>P_D, $P_{D(SM)}$</td>
<td>30, 5</td>
<td>W</td>
</tr>
<tr>
<td>Junction and Storage Temperature Range</td>
<td>T_J, T_{STG}</td>
<td>-55 to 150</td>
<td>$\degree C$</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient A</td>
<td>R_{JUA}</td>
<td>20</td>
<td>25</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Ambient B Steady-State</td>
<td>R_{JUC}</td>
<td>3.5</td>
<td>4.2</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Rev.1.0 : October 2015

www.aosmd.com

Page 1 of 6
Electrical Characteristics ($T_J=25\degree\text{C}$ unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DSS}</td>
<td>Drain-Source Breakdown Voltage</td>
<td>$I_D=250\mu\text{A}, V_{GS}=0\text{V}$</td>
<td>30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{DSS}</td>
<td>Zero Gate Voltage Drain Current</td>
<td>$V_{GS}=30\text{V}, V_{DS}=0\text{V}$</td>
<td></td>
<td>1</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I_{ES}</td>
<td>Gate-Body leakage current</td>
<td>$V_{GS}=0\text{V}, V_{DS}=\pm20\text{V}$</td>
<td></td>
<td>±10</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>$V_{GS(th)}$</td>
<td>Gate Threshold Voltage</td>
<td>$V_{GS}=V_{DS}, I_D=250\mu\text{A}$</td>
<td>1.4</td>
<td>1.9</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>$R_{DS(on)}$</td>
<td>Static Drain-Source On-Resistance</td>
<td>$V_{GS}=10\text{V}, I_D=20\text{A}$</td>
<td>3.0</td>
<td>3.7</td>
<td>5.5</td>
<td>mΩ</td>
</tr>
<tr>
<td>R_F</td>
<td>Forward Transconductance</td>
<td>$V_{DS}=5\text{V}, I_D=20\text{A}$</td>
<td>90</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>V_{SD}</td>
<td>Diode Forward Voltage</td>
<td>$I_F=1\text{A}, V_{GS}=0\text{V}$</td>
<td>0.68</td>
<td>1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>C_{iss}</td>
<td>Maximum Body-Diode Continuous Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>34 A</td>
</tr>
</tbody>
</table>

STATIC PARAMETERS

- **C_{iss}**: Input Capacitance
 - $V_{GS}=0\text{V}, V_{DS}=15\text{V}, f=1\text{MHz}$
 - Min: 3000 pF
 - Typ: 330 pF
 - Max: 600 pF
- **C_{oss}**: Output Capacitance
 - $V_{GS}=0\text{V}, V_{DS}=15\text{V}$, $f=1\text{MHz}$
 - Min: 280 pF
- **C_{rss}**: Reverse Transfer Capacitance
 - Min: 1 pF
- **R_g**: Gate resistance
 - $f=1\text{MHz}$
 - Min: 1 Ω
 - Typ: 2 Ω
 - Max: 3 Ω

SWITCHING PARAMETERS

- **$Q_{on}(10\text{V})$**: Total Gate Charge
 - $V_{GS}=10\text{V}, V_{DS}=15\text{V}, I_D=20\text{A}$
 - Min: 57 nC
 - Typ: 80 nC
- **$Q_{on}(4.5\text{V})$**: Total Gate Charge
 - $V_{GS}=10\text{V}, V_{DS}=15\text{V}$, $R_L=0.75\Omega$
 - Min: 28 nC
 - Typ: 40 nC
- **Q_{gs}**: Gate Source Charge
 - Min: 9.5 nC
- **Q_{gd}**: Gate Drain Charge
 - Min: 10 nC
- **t_{on}**: Turn-On Rise Time
 - $V_{GS}=10\text{V}, V_{DS}=15\text{V}, R_L=0.75\Omega$
 - Min: 7.5 ns
- **t_{off}**: Turn-Off Delay Time
 - $R_{GEN}=3\Omega$
 - Min: 49 ns
- **t_f**: Turn-Off Fall Time
 - Min: 13 ns
- **t_r**: Body Diode Reverse Recovery Time
 - $I_F=20\text{A}, \frac{dI_F}{dt}=500\text{A/μs}$
 - Min: 12 ns
- **Q_{rr}**: Body Diode Reverse Recovery Charge
 - $I_F=20\text{A}, \frac{dI_F}{dt}=500\text{A/μs}$
 - Min: 20 nC

DYNAMIC PARAMETERS

- **C_{gs}**: Input Capacitance
 - $V_{GS}=0\text{V}, V_{DS}=15\text{V}$, $f=1\text{MHz}$
 - Min: 3020 pF
- **C_{oss}**: Output Capacitance
 - Min: 330 pF
- **C_{rss}**: Reverse Transfer Capacitance
 - Min: 350 pF
- **R_g**: Gate resistance
 - $f=1\text{MHz}$
 - Min: 1 Ω
 - Typ: 2 Ω
 - Max: 3 Ω

A. The value of R_{thA} is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with $T_A=25\degree\text{C}$. The Power dissipation P_{SM} is based on R_{thA} ts 10s and the maximum allowed junction temperature of 150$\degree\text{C}$. The value in any given application depends on the user’s specific board design.

B. The power dissipation P_{D} is based on $T_{J(MAX)}=150\degree\text{C}$, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature $T_{J(MAX)}=150\degree\text{C}$. The SOA curve provides a single pulse rating.

D. The R_{thJA} is the sum of the thermal impedance from junction to case R_{thJC} and case to ambient.

E. The R_{thJA} is the sum of the thermal impedance from junction to case R_{thJC} and case to ambient.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}=150\degree\text{C}$. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with $T_A=25\degree\text{C}$.
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Power De-rating (Note F)

Figure 13: Current De-rating (Note F)

Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note H)

Figure 15: Normalized Maximum Transient Thermal Impedance (Note H)

\[D = \frac{T_{on}}{T_{PK}} \]

\[T_{JPK} = T_A + P_{DM} \cdot \theta_{JA} \cdot R_{\theta JA} \]
Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms