AONR66922
100V N-Channel AlphaSGT™

General Description

- Trench Power AlphaSGT™ technology
- Low R_{DS(ON)}
- Low Gate Charge
- Logic Level Gate Drive
- RoHS 2.0 and Halogen-Free Compliant

Applications

- Synchronous Rectification in DC/DC and AC/DC Converters
- Chargers
- PD Adaptor

Product Summary

V_{DS} 100V
I_{D} (at V_{GS}=10V) 80A
R_{DS(ON)} (at V_{GS}=10V) < 9mΩ
R_{DS(ON)} (at V_{GS}=4.5V) < 12mΩ

100% UIS Tested
100% R_{g} Tested

Orderable Part Number Package Type Form Minimum Order Quantity
AONR66922 DFN 3.3x3.3 EP Tape & Reel 3000

Absolute Maximum Ratings T_{A}=25°C unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>100</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current</td>
<td>I_{D}</td>
<td>80</td>
<td>A</td>
</tr>
<tr>
<td>(T_{C}=25°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{C}=100°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulsed Drain Current</td>
<td>I_{DM}</td>
<td>150</td>
<td>A</td>
</tr>
<tr>
<td>(C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Drain Current</td>
<td>I_{DSM}</td>
<td>15</td>
<td>A</td>
</tr>
<tr>
<td>(T_{A}=25°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{A}=70°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avalanche Current</td>
<td>I_{AS}</td>
<td>35</td>
<td>A</td>
</tr>
<tr>
<td>(T_{A}=0,1mH)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avalanche energy</td>
<td>E_{AS}</td>
<td>61</td>
<td>mJ</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_{D}</td>
<td>113</td>
<td>W</td>
</tr>
<tr>
<td>(T_{C}=25°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{C}=100°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_{DSM}</td>
<td>4.1</td>
<td>W</td>
</tr>
<tr>
<td>(T_{A}=25°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(T_{A}=70°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction and Storage Temperature Range</td>
<td>T_{J}, T_{STG}</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient</td>
<td>R_{JUA}</td>
<td>≤ 10s</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>Maximum Junction-to-Ambient</td>
<td>R_{JUC}</td>
<td>Steady-State</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>Maximum Junction-to-Case</td>
<td>R_{JUC}</td>
<td>Steady-State</td>
<td>0.9</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Electrical Characteristics (T_j=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV<sub>DS</sub></td>
<td>Drain-Source Breakdown Voltage</td>
<td>I<sub>D</sub>=250μA, V<sub>GS</sub>=0V</td>
<td>100</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>D</sub>=100V, V<sub>GS</sub>=0V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T<sub>j</sub>=55°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I<sub>DS</sub></td>
<td>Zero Gate Voltage Drain Current</td>
<td>V<sub>D</sub>=100V, V<sub>GS</sub>=0V</td>
<td>1</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I<sub>GS</sub></td>
<td>Gate-Body leakage current</td>
<td>V<sub>D</sub>=0V, V<sub>GS</sub>=±20V</td>
<td>±100</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>V<sub>DS(th)</sub></td>
<td>Gate Threshold Voltage</td>
<td></td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>R<sub>DS(ON)</sub></td>
<td>Static Drain-Source On-Resistance</td>
<td>V<sub>GS</sub>=10V, I<sub>D</sub>=15A</td>
<td>7.4</td>
<td>9</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V<sub>GS</sub>=4.5V, I<sub>D</sub>=13A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g<sub>f</sub></td>
<td>Forward Transconductance</td>
<td>V<sub>D</sub>=5V, I<sub>D</sub>=15A</td>
<td>55</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>V<sub>SD</sub></td>
<td>Diode Forward Voltage</td>
<td>I<sub>S</sub>=1A, V<sub>GS</sub>=0V</td>
<td>0.72</td>
<td>1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maximum Body-Diode Continuous Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STATIC PARAMETERS

- **B.V_{DS}** (Drain-Source Breakdown Voltage):
 - Conditions: I_D=250μA, V_{GS}=0V
 - Min: 100 V
- **I_{DS}** (Zero Gate Voltage Drain Current):
 - Conditions: V_D=100V, V_{GS}=0V
 - Min: 1 μA
 - Max: 5 μA
- **I_{GS}** (Gate-Body leakage current):
 - Conditions: V_D=0V, V_{GS}=±20V
 - Min: ±100 nA
- **V_{DS(th)}** (Gate Threshold Voltage):
 - Conditions: V_{DS}=V_{GS}, I_D=250μA
 - Min: 1.5 V
 - Typ: 2.0 V
 - Max: 2.5 V
- **R_{DS(ON)}** (Static Drain-Source On-Resistance):
 - Conditions: V_{GS}=10V, I_D=15A
 - Min: 7.4 mΩ
 - Typ: 9 mΩ
 - Max: 12.8 mΩ
 - T_j=125°C
- **g_f** (Forward Transconductance):
 - Conditions: V_D=5V, I_D=15A
 - Min: 55 S
- **V_{SD}** (Diode Forward Voltage):
 - Conditions: I_S=1A, V_{GS}=0V
 - Min: 0.72 V
 - Typ: 1 V
 - Max: 4 V

DYNAMIC PARAMETERS

- **C_{iss}** (Input Capacitance):
 - Conditions: V_{GS}=0V, V_D=50V, f=1MHz
 - Min: 2180 pF
- **C_{oss}** (Output Capacitance):
 - Conditions: V_{GS}=0V, V_D=50V, f=1MHz
 - Min: 550 pF
- **R_{gg}** (Reverse Transfer Capacitance):
 - Conditions: f=1MHz
 - Min: 13 pF
 - Typ: 17 pF
 - Max: 19 pF

SWITCHING PARAMETERS

- **Q_g(10V)** (Total Gate Charge):
 - Conditions: V_{GS}=10V, V_D=50V, I_D=15A
 - Min: 32.5 nC
 - Typ: 46 nC
- **Q_g(4.5V)** (Total Gate Charge):
 - Conditions: V_{GS}=10V, V_D=50V, I_D=15A
 - Min: 15 nC
- **Q_{gs}** (Gate Source Charge):
 - Conditions: V_{GS}=0V, V_D=50V
 - Min: 7 nC
- **Q_{gd}** (Gate Drain Charge):
 - Conditions: V_{GS}=0V, V_D=50V
 - Min: 5 nC
- **Q_{oss}** (Output Charge):
 - Conditions: V_{GS}=0V, V_D=50V
 - Min: 45 nC
- **t_{on}** (Turn-On Delay Time):
 - Conditions: V_{GS}=10V, V_D=50V, R_L=3.35Ω
 - Min: 8.5 ns
- **t_{rr}** (Turn-Off Rise Time):
 - Conditions: R_{GEN}=3Ω
 - Min: 5.5 ns
- **t_{off}** (Turn-Off Delay Time):
 - Conditions: R_{GEN}=3Ω
 - Min: 27.5 ns
- **t_{D(on)}** (Body Diode Reverse Recovery Time):
 - Conditions: I_D=15A, di/dt=500A/μs
 - Min: 32 ns
 - Max: 138 ns
 - T_j=150°C

A. The value of R_{qJA} is measured with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The Power dissipation P_{DSM} is based on R_{qJA} and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user’s specific board design.

B. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature T_{J(MAX)}=150°C.

D. The R_{qJA} is the sum of the thermal impedance from junction to case R_{qJC} and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse rating.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

For more information, visit http://www.aosmd.com/terms_and_conditions_of_sale
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Power De-rating (Note F)

Figure 13: Current De-rating (Note F)

Figure 14: Coss stored Energy

Figure 15: Single Pulse Power Rating

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms