General Description

- Trench Power MOSFET technology
- Low $R_{DS(ON)}$
- Low Gate Charge
- High Current Capability
- RoHS and Halogen-Free Compliant

Applications

- DC/DC Converters in Computing
- POL in Telecom and Industrial

Product Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Q1</th>
<th>Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DS} (30V)</td>
<td>30V</td>
<td>30V</td>
</tr>
<tr>
<td>I_D (at $V_{GS}=10V$)</td>
<td>51A</td>
<td>85A</td>
</tr>
<tr>
<td>$R_{DS(ON)}$ (at $V_{GS}=10V$)</td>
<td><5.2mΩ</td>
<td><2.8mΩ</td>
</tr>
<tr>
<td>$R_{DS(ON)}$ (at $V_{GS}=4.5V$)</td>
<td><8.6mΩ</td>
<td><3.5mΩ</td>
</tr>
</tbody>
</table>

100% UIS Tested
100% R_g Tested

Orderable Part Number

<table>
<thead>
<tr>
<th>AONY36304</th>
<th>DFN 5x6D</th>
<th>Tape & Reel</th>
<th>Minimum Order Quantity</th>
</tr>
</thead>
</table>

Absolute Maximum Ratings

$T_A=25^\circ C$ unless otherwise noted

Parameter

- **Drain-Source Voltage**
 - Symbol: V_{DS}
 - Typ: 30
 - Max Q1: 30
 - Max Q2: 30
 - Units: V

- **Gate-Source Voltage**
 - Symbol: V_{GS}
 - $T_A=25^\circ C$
 - $T_A=100^\circ C$
 - I_D:
 - Typ: 51
 - Max: 83
 - I_{DM}:
 - Typ: 110
 - Max: 180

- **Continuous Drain Current**
 - $T_A=25^\circ C$
 - $T_A=70^\circ C$
 - I_{DSM}:
 - Typ: 20
 - Max: 26
 - I_{AS}:
 - Typ: 50
 - Max: 75

- **Avalanche Current**
 - $L=0.01mH$
 - E_{AS}:
 - Typ: 12.5
 - Max: 28
 - $T_{C}=25^\circ C$
 - $T_{C}=100^\circ C$
 - P_D:
 - Typ: 21
 - Max: 31.5
 - $T_{A}=25^\circ C$
 - $T_{A}=70^\circ C$
 - P_{DSM}:
 - Typ: 3.1
 - Max: 3.1

- **Power Dissipation**
 - P_{DJ}
 - Typ: 2
 - Max: 2

- **Junction and Storage Temperature Range**
 - T_J, T_{STG}
 - Min: -55
 - Max: 150
 - Units: °C

Thermal Characteristics

Parameter

- **Maximum Junction-to-Ambient**
 - Typ: 4.6
 - Steady-State: 3.1
 - Max: 6
 - Units: °C/W
- **Maximum Junction-to-Case**
 - Typ: 4.6
 - Steady-State: 3.1
 - Max: 4
 - Units: °C/W
Q1 Electrical Characteristics (T_j=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV<sub>DS</sub></td>
<td>Drain-Source Breakdown Voltage</td>
<td>V<sub>DS</sub>=250μA, V<sub>GS</sub>=0V</td>
<td>30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>IDSS</td>
<td>Zero Gate Voltage Drain Current</td>
<td>V<sub>DS</sub>=30V, V<sub>GS</sub>=0V</td>
<td></td>
<td></td>
<td>1</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T<sub>j</sub>=55°C</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>IGSS</td>
<td>Gate-Body leakage current</td>
<td>V<sub>DS</sub>=0V, V<sub>GS</sub>=±20V</td>
<td></td>
<td></td>
<td>±100</td>
<td>nA</td>
</tr>
<tr>
<td>VGS(TH)</td>
<td>Gate Threshold Voltage</td>
<td>V<sub>DS</sub>=V<sub>GS</sub>, I<sub>D</sub>=250μA</td>
<td>1.3</td>
<td>1.75</td>
<td>2.2</td>
<td>V</td>
</tr>
<tr>
<td>R<sub>DS(ON)</sub></td>
<td>Static Drain-Source On-Resistance</td>
<td>V<sub>GS</sub>=10V, I<sub>D</sub>=20A</td>
<td>3.8</td>
<td>5.2</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T<sub>j</sub>=125°C</td>
<td></td>
<td></td>
<td>5.4</td>
<td>7.6</td>
</tr>
<tr>
<td>V<sub>fs</sub></td>
<td>Forward Transconductance</td>
<td>V<sub>DS</sub>=5V, I<sub>D</sub>=20A</td>
<td>80</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>V<sub>gd</sub></td>
<td>Diode Forward Voltage</td>
<td>I<sub>S</sub>=1A, V<sub>GS</sub>=0V</td>
<td>0.7</td>
<td>1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>IS</td>
<td>Maximum Body-Diode Continuous Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>DYNAMIC PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Input Capacitance</td>
<td>V<sub>GS</sub>=0V, V<sub>DS</sub>=15V, f=1MHz</td>
<td>1000</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>CGS</td>
<td>Output Capacitance</td>
<td></td>
<td></td>
<td></td>
<td>290</td>
<td>pF</td>
</tr>
<tr>
<td>C<sub>gs</sub></td>
<td>Reverse Transfer Capacitance</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>pF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RG</td>
<td>Gate resistance</td>
<td>f=1MHz</td>
<td>0.2</td>
<td>0.6</td>
<td>1</td>
<td>Ω</td>
</tr>
<tr>
<td>SWITCHING PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qg(10V)</td>
<td>Total Gate Charge</td>
<td>V<sub>GS</sub>=10V, V<sub>DS</sub>=15V, I<sub>D</sub>=20A</td>
<td>17</td>
<td>30</td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Qg(4.5V)</td>
<td>Total Gate Charge</td>
<td></td>
<td></td>
<td>8</td>
<td>15</td>
<td>nC</td>
</tr>
<tr>
<td>Qgs</td>
<td>Gate Source Charge</td>
<td></td>
<td></td>
<td>2.8</td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Qgd</td>
<td>Gate Drain Charge</td>
<td></td>
<td></td>
<td>4.1</td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>t<sub>rr</sub></td>
<td>Turn-On Rise Time</td>
<td>V<sub>GS</sub>=10V, V<sub>DS</sub>=15V, R<sub>L</sub>=0.75Ω,</td>
<td>7</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>on</sub></td>
<td>Turn-Off DelayTime</td>
<td>R<sub>GEN</sub>=3Ω</td>
<td>19</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t<sub>f</sub></td>
<td>Turn-Off Fall Time</td>
<td></td>
<td></td>
<td>2.5</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Q<sub>rr</sub></td>
<td>Body Diode Reverse Recovery Time</td>
<td>I<sub>D</sub>=20A, di/dt=500A/μs</td>
<td>11</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Q<sub>pr</sub></td>
<td>Body Diode Reverse Recovery Charge</td>
<td>I<sub>D</sub>=20A, di/dt=500A/μs</td>
<td>19</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
</tbody>
</table>

A. The value of R_{qJA} is measured with the device mounted on a 1in² FR-4 board with 2oz. Copper, in a still air environment with T_a=25°C. The Power dissipation P_{DSM} is based on R_{qJA}≤10s and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user’s specific board design.

B. The power dissipation P_{DSM} is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of 150°C. The SOA curve provides a single pulse rating.

C. Single pulse width limited by junction temperature T_{MAX}=150°C. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

D. The R_{qJA} is the sum of the thermal impedance from junction to case R_{qJC} and case to ambient.

E. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{MAX}=150°C. The SOA curve provides a single pulse rating.

F. These characteristics are obtained using <300μs pulses, duty cycle 0.5% max.

G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_a=25°C.
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

- Figure 12: Power De-rating (Note F)
- Figure 13: Current De-rating (Note F)
- Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note H)
- Figure 15: Normalized Maximum Transient Thermal Impedance (Note H)
Q2 Electrical Characteristics (T_J=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV_DSS</td>
<td>Drain-Source Breakdown Voltage</td>
<td>V_DG=250μA, V_GS=0V</td>
<td>30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_GS</td>
<td>Zero Gate Voltage Drain Current</td>
<td>V_DG=30V, V_GS=0V, T_J=55°C</td>
<td>1</td>
<td>5</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I_GS</td>
<td>Gate-Body leakage current</td>
<td>V_DG=0V, V_GS=±12V</td>
<td>±100</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>V_GS(TH)</td>
<td>Gate Threshold Voltage</td>
<td>V_DG=V_GS, I_D=250μA</td>
<td>1.1</td>
<td>1.5</td>
<td>1.9</td>
<td>V</td>
</tr>
<tr>
<td>R(DS(ON))</td>
<td>Static Drain-Source On-Resistance</td>
<td>V_GS=10V, I_D=20A, T_J=125°C</td>
<td>2.1</td>
<td>2.8</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>I_F</td>
<td>Forward Transconductance</td>
<td>V_DG=5V, I_D=20A</td>
<td>165</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_FD</td>
<td>Diode Forward Voltage</td>
<td>V_DG=1A, I_D=20A</td>
<td>0.7</td>
<td>1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_S</td>
<td>Maximum Body-Diode Continuous Current</td>
<td>I_D=1A, V_DG=0V</td>
<td>40</td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

STATIC PARAMETERS

Input Capacitance

C_iss

Output Capacitance

C_oss

Reverse Transfer Capacitance

Crss

Gate resistance

R_g

DYNAMIC PARAMETERS

- **Total Gate Charge**
 - I_iss
 - Iiss
- **Gate Source Charge**
 - Qiss
- **Gate Drain Charge**
 - Qgd
- **Turn-On Delay Time**
 - t_on
- **Turn-Off Delay Time**
 - t_off
- **Turn-Off Fall Time**
 - t_f
- **Body Diode Reverse Recovery Time**
 - t_r
- **Body Diode Reverse Recovery Charge**
 - Qrr

SWITCHING PARAMETERS

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS’ terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

![Graph of Gate-Charge Characteristics](image1)

Figure 7: Gate-Charge Characteristics

![Graph of Capacitance Characteristics](image2)

Figure 8: Capacitance Characteristics

![Graph of Maximum Forward Biased Safe Operating Area](image3)

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

![Graph of Single Pulse Power Rating Junction-to-Case](image4)

Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

![Graph of Normalized Maximum Transient Thermal Impedance](image5)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Power De-rating (Note F)

Figure 13: Current De-rating (Note F)

Figure 14: Single Pulse Power Rating Junction-to-Ambient (Note H)

Figure 15: Normalized Maximum Transient Thermal Impedance (Note H)