General Description

• Trench Power MOSFET technology
• Low $R_{DS(ON)}$
• Low Gate Charge
• RoHS and Halogen-Free Compliant

Applications

• Ideal for Load Switching

Product Summary

V_{DS} 30V

I_D (at V_{GS}=10V) 3.7A

$R_{DS(ON)}$ (at V_{GS}=10V) < 51mΩ

$R_{DS(ON)}$ (at V_{GS}=4.5V) < 56mΩ

$R_{DS(ON)}$ (at V_{GS}=2.5V) < 72mΩ

ESD protection

Applications

Symbol

V_{DS}

V_{GS}

I_D

T_{J}, T_{STG}

Parameter

Drain-Source Voltage

Gate-Source Voltage

Continuous Drain Current

Pulsed Drain Current

Power Dissipation

Junction and Storage Temperature Range

Symbol

V_{DS}

V_{GS}

I_D

I_{OM}

P_D

T_{J}, T_{STG}

Maximum

30

±12

3.7

2.9

1.1

-55 to 150

Unit

V

V

A

°C

°C/W

°C/W

°C/W

Absolute Maximum Ratings $T_A=25^\circ C$ unless otherwise noted

Orderable Part Number

AOSN32338C

Package Type

SC70-3

Form

Tape & Reel

Minimum Order Quantity

3000

Thermal Characteristics

Parameter

Maximum Junction-to-Ambient

Maximum Junction-to-Ambient

Maximum Junction-to-Lead

Symbol

$t \leq 10s$

Steady-State

Steady-State

t_{JUA}

R_{JUA}

R_{JUL}

Typ

110

110

60

Max

90

135

72

Units

°C/W

°C/W

°C/W
Electrical Characteristics (T_J=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVDSS</td>
<td>Drain-Source Breakdown Voltage</td>
<td>ID=250μA, VGS=0V</td>
<td>30</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>IDSS</td>
<td>Zero Gate Voltage Drain Current</td>
<td>VDS=30V, VGS=0V</td>
<td>1</td>
<td>5</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>IVGSS</td>
<td>Gate-Body leakage current</td>
<td>VDS=0V, VGS=±12V</td>
<td>±10</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>VGS(ON)</td>
<td>Gate Threshold Voltage</td>
<td>VDS=VGS, ID=250μA</td>
<td>0.5</td>
<td>1</td>
<td>1.5</td>
<td>V</td>
</tr>
<tr>
<td>RDS(ON)</td>
<td>Static Drain-Source On-Resistance</td>
<td>VGS=10V, IG=3.7A</td>
<td>42</td>
<td>51</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VGS=4.5V, IG=3.5A</td>
<td>58</td>
<td>70</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VGS=2.5V, IG=3.1A</td>
<td>54</td>
<td>72</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>gFS</td>
<td>Forward Transconductance</td>
<td>VDS=5V, IG=3.7A</td>
<td>20</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>VSD</td>
<td>Diode Forward Voltage</td>
<td>IG=1A, VGS=0V</td>
<td>0.7</td>
<td>1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>IS</td>
<td>Maximum Body-Diode Continuous Current</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

DYNAMIC PARAMETERS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciss</td>
<td>Input Capacitance</td>
<td>VGS=0V, VDS=15V, f=1MHz</td>
<td>340 pF</td>
</tr>
<tr>
<td>Coss</td>
<td>Output Capacitance</td>
<td></td>
<td>30 pF</td>
</tr>
<tr>
<td>Cgss</td>
<td>Reverse Transfer Capacitance</td>
<td></td>
<td>25 pF</td>
</tr>
<tr>
<td>Rg</td>
<td>Gate resistance</td>
<td>f=1MHz</td>
<td>4 8 12 Ω</td>
</tr>
</tbody>
</table>

SWITCHING PARAMETERS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qg(10V)</td>
<td>Total Gate Charge</td>
<td>VGS=10V, VDS=15V, IG=3.7A</td>
<td>8 16 nC</td>
</tr>
<tr>
<td>Qg(4.5V)</td>
<td>Total Gate Charge</td>
<td></td>
<td>4 8 nC</td>
</tr>
<tr>
<td>Qgs</td>
<td>Gate Source Charge</td>
<td></td>
<td>1 nC</td>
</tr>
<tr>
<td>Qgd</td>
<td>Gate Drain Charge</td>
<td></td>
<td>1.2 nC</td>
</tr>
<tr>
<td>tON</td>
<td>Turn-On Delay Time</td>
<td></td>
<td>2.5 ns</td>
</tr>
<tr>
<td>tr</td>
<td>Turn-On Rise Time</td>
<td>VGS=10V, VDS=15V, RL=4.05Ω</td>
<td>3 ns</td>
</tr>
<tr>
<td>tOFF</td>
<td>Turn-Off Delay Time</td>
<td>RGEN=3Ω</td>
<td>30 ns</td>
</tr>
<tr>
<td>tf</td>
<td>Turn-Off Fall Time</td>
<td></td>
<td>5 ns</td>
</tr>
<tr>
<td>trr</td>
<td>Body Diode Reverse Recovery Time</td>
<td>IG=3.7A, di/dt=500A/μs</td>
<td>5.5 μs</td>
</tr>
<tr>
<td>Qrr</td>
<td>Body Diode Reverse Recovery Charge</td>
<td>IG=3.7A, di/dt=500A/μs</td>
<td>4 nC</td>
</tr>
</tbody>
</table>

A. The value of RqJA is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A = 25°C. The value in any given application depends on the user’s specific board design.

B. The power dissipation P_D is based on T_J(MAX) = 150°C, using ≤ 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature T_J(MAX) = 150°C. Ratings are based on low frequency and duty cycles to keep initial T_J = 25°C.

D. The RqJA is the sum of the thermal impedance from junction to lead RqJL and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-air thermal impedance which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of T_J(MAX) = 150°C. The SOA curve provides a single pulse rating.

APPLICATIONS OR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms