General Description
- Trench Power AlphaSGT™ technology
- Low $R_{DS(ON)}$
- Low Gate Charge

Applications
- Primary Switch for 48V systems

Product Summary
- V_{DS} 150V
- I_D (at V_{GS}=10V) 5A
- $R_{DS(ON)}$ (at V_{GS}=10V) < 63mΩ
- $R_{DS(ON)}$ (at V_{GS}=4.5V) < 70mΩ

Applications
- 100% UIS Tested
- 100% R_g Tested

Orderable Part Number
| AOSP62530 | SO-8 | Tape & Reel | 3000 |

Absolute Maximum Ratings $T_A=25°C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>150</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current ($T_A=25°C$)</td>
<td>I_D</td>
<td>5</td>
<td>A</td>
</tr>
<tr>
<td>Continuous Drain Current ($T_A=70°C$)</td>
<td>I_D</td>
<td>3.8</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Drain Current</td>
<td>I_{DM}</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche Current</td>
<td>I_{AS}</td>
<td>14</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche energy ($L=0.3mH$)</td>
<td>E_{AS}</td>
<td>29</td>
<td>mJ</td>
</tr>
<tr>
<td>Power Dissipation ($T_A=25°C$)</td>
<td>P_D</td>
<td>3.1</td>
<td>W</td>
</tr>
<tr>
<td>Power Dissipation ($T_A=70°C$)</td>
<td>P_D</td>
<td>2.0</td>
<td>W</td>
</tr>
<tr>
<td>Junction and Storage Temperature Range</td>
<td>T_J, T_{STG}</td>
<td>-55 to 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient ($t \leq 10s$)</td>
<td>R_{JA}</td>
<td>31</td>
<td>40</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Ambient (Steady-State)</td>
<td>R_{JA}</td>
<td>59</td>
<td>75</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Lead (Steady-State)</td>
<td>R_{JUL}</td>
<td>16</td>
<td>24</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Electrical Characteristics (T_J=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVDSS</td>
<td>Drain-Source Breakdown Voltage</td>
<td>I<sub>D</sub>=250μA, V<sub>GS</sub>=0V</td>
<td>150</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>IDSS</td>
<td>Zero Gate Voltage Drain Current</td>
<td>V<sub>DS</sub>=150V, V<sub>GS</sub>=0V</td>
<td>1</td>
<td>5</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>IGSS</td>
<td>Gate-Body leakage current</td>
<td>V<sub>DS</sub>=0V, V<sub>GS</sub>=±20V</td>
<td>±100</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>VGS(th)</td>
<td>Gate Threshold Voltage</td>
<td>V<sub>DS</sub>=V<sub>GS</sub>, I<sub>D</sub>=250μA</td>
<td>1.7</td>
<td>2.2</td>
<td>2.7</td>
<td>V</td>
</tr>
<tr>
<td>RDSON</td>
<td>Static Drain-Source On-Resistance</td>
<td>V<sub>GS</sub>=10V, I<sub>G</sub>=5A</td>
<td>52</td>
<td>63</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>TJ</td>
<td>Forward Transconductance</td>
<td>V<sub>DS</sub>=5V, I<sub>D</sub>=5A</td>
<td>14</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>VSD</td>
<td>Diode Forward Voltage</td>
<td>I<sub>D</sub>=1A, V<sub>GS</sub>=0V</td>
<td>0.7</td>
<td>1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>IS</td>
<td>Maximum Body-Diode Continuous Current</td>
<td></td>
<td>4</td>
<td>4</td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

STATIC PARAMETERS

- **Cgs** Input Capacitance, V_{GS}=0V, V_{DS}=75V, f=1MHz, 675 pF
- **Coss** Output Capacitance, 78 pF
- **Crss** Reverse Transfer Capacitance, 4 pF
- **Rds(ON)** Static Drain-Source On-Resistance, 1.5 Ω

SWITCHING PARAMETERS

- **Qg(10V)** Total Gate Charge, V_{GS}=10V, V_{DS}=75V, I_G=5A, 11.5 nC
- **Qg(4.5V)** Total Gate Charge, 5.5 nC
- **Qgs** Gate Source Charge, 2.0 nC
- **Qgd** Gate Drain Charge, 2.5 nC
- **t_r** Turn-On Rise Time, 6.0 ns
- **t_{off}** Turn-Off Fall Time, 5 ns
- **t_{rr}** Body Diode Reverse Recovery Time, 37 ns
- **Q_{rr}** Body Diode Reverse Recovery Charge, 210 nC

DYNAMIC PARAMETERS

- **RqJA** Input Capacitance, 675 pF
- **RqJA** Output Capacitance, 78 pF
- **RqJA** Reverse Transfer Capacitance, 4 pF
- **R_ds(ON)** Static Drain-Source On-Resistance, 1.5 Ω

NOTES

- A. The value of R_{qJA} is measured in a still air environment with T_A=25°C. The value in any given application depends on the user's specific board design.
- B. The power dissipation P_D is based on T_{J(MAX)}=150°C, using ≤10s junction-to-ambient thermal resistance.
- C. The power dissipation P_D is based on low frequency and duty cycles to keep initial T_J=25°C.
- D. The R_{qJA} is the sum of the thermal impedance from junction to lead R_{qJA} and lead to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-ambient thermal impedance which is assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse rating.
- G. The spike duty cycle 5% max, limited by junction temperature T_J=125°C.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at:

http://www.aosmd.com/terms_and_conditions_of_sale

Rev.1.0: February 2021
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Resistive Switching Test Circuit & Waveforms

Figure C: Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Figure D: Diode Recovery Test Circuit & Waveforms