General Description

- Latest AlphaIGBT (αIGBT) technology
- 650V breakdown voltage
- Very fast and soft recovery freewheeling diode
- High efficient turn-on di/dt controllability
- Low $V_{CE(sat)}$ enables high efficiencies
- Low turn-off switching loss and softness
- Very good EMI behavior
- High short-circuit ruggedness

Applications

- Motor drives
- Sewing machines
- Home appliances
- Fan, pump, vacuum cleaner
- Other hard switching applications

Product Summary

- V_{CE}: 650V
- I_C ($T_C=100\degree C$): 10A
- $V_{CE(sat)}$ ($T_J=25\degree C$): 1.6V

Orderable Part Number	Package Type	Form	Minimum Order Quantity
AOT10B65MQ2 | TO220 | Tube | 1000 |

Absolute Maximum Ratings $T_A=25\degree C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>AOT10B65MQ2</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collector-Emitter Voltage</td>
<td>V_{CE}</td>
<td>650</td>
<td>V</td>
</tr>
<tr>
<td>Gate-Emitter Voltage</td>
<td>V_{GE}</td>
<td>±30</td>
<td>V</td>
</tr>
<tr>
<td>Continuous Collector Current</td>
<td>I_{C}</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>$T_C=25\degree C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_C=100\degree C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulsed Collector Current, Limited by $T_{J(max)}$</td>
<td>I_{CM}</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>$T_C=25\degree C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_C=100\degree C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turn-Off SOA, $V_{CE}\leq 650V$, Limited by $T_{J(max)}$</td>
<td>I_{LM}</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>$T_C=25\degree C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_C=100\degree C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Diode Forward Current</td>
<td>I_{F}</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>$T_C=25\degree C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_C=100\degree C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diode Pulsed Current, Limited by $T_{J(max)}$</td>
<td>I_{FM}</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>$T_C=25\degree C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_C=100\degree C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Circuit Withstanding Time</td>
<td>t_{SC}</td>
<td>5</td>
<td>μS</td>
</tr>
<tr>
<td>$V_{GE}=15V$, $V_{CC}\leq 400V$, $T_J\leq 175\degree C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_D</td>
<td>150</td>
<td>W</td>
</tr>
<tr>
<td>$T_C=25\degree C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$T_C=100\degree C$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction and Storage Temperature Range</td>
<td>T_J, T_{STG}</td>
<td>-55 to 175</td>
<td>°C</td>
</tr>
<tr>
<td>Maximum Lead Temperature for Soldering Purpose, 1/8” from case for 5 seconds</td>
<td>T_L</td>
<td>300</td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>AOT10B65MQ2</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient</td>
<td>R_{JA}</td>
<td>65</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum IGBT Junction-to-Case</td>
<td>R_{JC}</td>
<td>1</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Diode Junction-to-Case</td>
<td>R_{JUC}</td>
<td>3.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

(1) Allowed number of short circuits: <1000; time between short circuits: >1s.
Symbol | **Parameter** | **Conditions** | **Min** | **Typ** | **Max** | **Units**
---|---|---|---|---|---|
\(BV_{GES}\) | Collector-Emitter Breakdown Voltage | \(I_c=1\text{mA}, V_{GE}=0\text{V}, T_J=25\text{°C}\) | 650 | - | - | V
\(V_{CE(sat)}\) | Collector-Emitter Saturation Voltage | \(V_{GE}=15\text{V}, I_C=10\text{A}\) | | 1.6 | 2 | V
\(V_F\) | Diode Forward Voltage | \(V_{GE}=0\text{V}, I_F=10\text{A}\) | | 1.65 | 2.1 | V
\(V_{GE(th)}\) | Gate-Emitter Threshold Voltage | \(V_{CE}=5\text{V}, I_c=1\text{mA}\) | | 5.1 | - | V
\(I_{CES}\) | Zero Gate Voltage Collector Current | \(V_{CE}=650\text{V}, V_{GE}=0\text{V}\) | | - | 10 | \(\mu\text{A}\)
\(I_{GES}\) | Gate-Emitter Leakage Current | \(V_{CE}=0\text{V}, V_{GE}=\pm3\text{0V}\) | | - | ±100 | nA
\(g_{FS}\) | Forward Transconductance | \(V_{CE}=20\text{V}, I_c=10\text{A}\) | | 9 | - | S

DYNAMIC PARAMETERS

\(C_{iss}\) | Input Capacitance | \(V_{GE}=0\text{V}, V_{CC}=25\text{V}, f=1\text{MHz}\) | - | 655 | - | pF
\(C_{oss}\) | Output Capacitance | \(V_{GE}=0\text{V}, V_{CC}=25\text{V}, f=1\text{MHz}\) | - | 55 | - | pF
\(C_{rss}\) | Reverse Transfer Capacitance | | - | 25 | - | pF
\(Q_g\) | Total Gate Charge | \(V_{GE}=15\text{V}, V_{CC}=520\text{V}, I_c=10\text{A}\) | - | 24 | - | nC
\(Q_{ge}\) | Gate to Emitter Charge | \(V_{GE}=15\text{V}, V_{CC}=520\text{V}, I_c=10\text{A}\) | - | 5.5 | - | nC
\(Q_{gc}\) | Gate to Collector Charge | | - | 12 | - | nC
\(I_{(SCC)}\) | Short Circuit Collector Current | \(V_{GE}=15\text{V}, V_{CC}=400\text{V}, I_{SC}=5\text{sA}, T_J\leq175\text{°C}\) | - | 70 | - | A
\(R_g\) | Gate Resistance | \(V_{GE}=0\text{V}, V_{CC}=0\text{V}, f=1\text{MHz}\) | - | 5.8 | - | \(\Omega\)

SWITCHING PARAMETERS, (Load Inductive, \(T_J=25\text{°C}\))

\(t_{(on)}\) | Turn-On Delay Time | | - | 12 | - | ns
\(t_{r}\) | Turn-On Rise Time | \(T_J=25\text{°C}\) | - | 16 | - | ns
\(t_{(off)}\) | Turn-Off Delay Time | \(T_J=25\text{°C}\) | - | 91 | - | ns
\(t_{f}\) | Turn-Off Fall Time | \(V_{GE}=15\text{V}, V_{CC}=400\text{V}, I_c=10\text{A}, R_{Q}=30\Omega\) | - | 14 | - | ns
\(E_{on}\) | Turn-On Energy | \(R_{Q}=30\Omega\) | - | 0.18 | - | mJ
\(E_{off}\) | Turn-Off Energy | - | 0.13 | - | mJ
\(E_{total}\) | Total Switching Energy | - | 0.31 | - | mJ
\(I_{DR}\) | Diode Reverse Recovery Time | \(T_J=25\text{°C}\) | - | 106 | - | ns
\(Q_{DR}\) | Diode Reverse Recovery Charge | \(I_f=10\text{A}, di/dt=200\text{A}/\mu\text{s}, V_{CC}=400\text{V}\) | - | 0.24 | - | \(\mu\text{C}\)
\(I_{ms}\) | Diode Peak Reverse Recovery Current | - | 3.7 | - | A

SWITCHING PARAMETERS, (Load Inductive, \(T_J=175\text{°C}\))

\(t_{(on)}\) | Turn-On Delay Time | | - | 10 | - | ns
\(t_{r}\) | Turn-On Rise Time | \(T_J=175\text{°C}\) | - | 17 | - | ns
\(t_{(off)}\) | Turn-Off Delay Time | \(T_J=175\text{°C}\) | - | 111 | - | ns
\(t_{f}\) | Turn-Off Fall Time | \(V_{GE}=15\text{V}, V_{CC}=400\text{V}, I_c=10\text{A}, R_{Q}=30\Omega\) | - | 26 | - | ns
\(E_{on}\) | Turn-On Energy | \(R_{Q}=30\Omega\) | - | 0.2 | - | mJ
\(E_{off}\) | Turn-Off Energy | - | 0.23 | - | mJ
\(E_{total}\) | Total Switching Energy | - | 0.43 | - | mJ
\(I_{DR}\) | Diode Reverse Recovery Time | \(T_J=175\text{°C}\) | - | 168 | - | ns
\(Q_{DR}\) | Diode Reverse Recovery Charge | \(I_f=10\text{A}, di/dt=200\text{A}/\mu\text{s}, V_{CC}=400\text{V}\) | - | 0.51 | - | \(\mu\text{C}\)
\(I_{ms}\) | Diode Peak Reverse Recovery Current | - | 5 | - | A

APPLICATIONS OR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: Output Characteristic
(Tj=25°C)

Figure 2: Output Characteristic
(Tj=175°C)

Figure 3: Transfer Characteristic

Figure 4: Diode Characteristic

Figure 5: Collector-Emitter Saturation Voltage vs. Junction Temperature

Figure 6: Diode Forward voltage vs. Junction Temperature
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristic

Figure 9: Forward Bias Safe Operating Area

Figure 10: Power Dissipation as a Function of Case

Figure 11: Current De-rating

Figure 12: Diode Reverse Leakage Current vs. Junction Temperature
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

- Figure 13: Switching Time vs. I_C
 \((T_j=175^\circ C, \ V_{GE}=15V, \ V_{CE}=400V, \ R_g=30\Omega) \)

- Figure 14: Switching Time vs. R_g
 \((T_j=175^\circ C, \ V_{GE}=15V, \ V_{CE}=400V, \ I_C=10A) \)

- Figure 15: Switching Time vs. T_j
 \((V_{GE}=15V, \ V_{CE}=400V, \ I_C=10A, \ R_g=30\Omega) \)

- Figure 16: V_{GE(th)} vs. T_j

- Figure 17: Switching Loss vs. I_C
 \((T_j=175^\circ C, \ V_{GE}=15V, \ V_{CE}=400V, \ R_g=30\Omega) \)

- Figure 18: Switching Loss vs. R_g
 \((T_j=175^\circ C, \ V_{GE}=15V, \ V_{CE}=400V, \ I_C=10A) \)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 19: Switching Loss vs. T_J ($V_{GE}=15V, V_{CE}=400V, I_F=10A, R_g=30\Omega$)

Figure 20: Switching Loss vs. V_{CE} ($T_J=175^\circ C, V_{GE}=15V, I_F=10A, R_g=30\Omega$)

Figure 21: Diode Reverse Recovery Charge and Peak Current vs. Conduction Current ($V_{GE}=15V, V_{CE}=400V, \text{di/dt}=200A/\mu s$)

Figure 22: Diode Reverse Recovery Time and Softness Factor vs. Conduction Current ($V_{GE}=15V, V_{CE}=400V, \text{di/dt}=200A/\mu s$)

Figure 23: Diode Reverse Recovery Charge and Peak Current vs. di/dt ($V_{GE}=15V, V_{CE}=400V, I_F=10A$)

Figure 24: Diode Reverse Recovery Time and Softness Factor vs. di/dt ($V_{GE}=15V, V_{CE}=400V, I_F=10A$)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

![Graph](image)

Figure 25: Normalized Maximum Transient Thermal Impedance for IGBT

![Graph](image)

Figure 26: Normalized Maximum Transient Thermal Impedance for Diode

\[D = T_{on}/T \]

\[T_{J,PK} = T_{C} + P_{DM} \cdot Z_{JC} \cdot R_{JC} \]

\[R_{JC} = 1 ^\circ C/W \]

In descending order:

- \(D = 0.5, 0.3, 0.1, 0.05, 0.02, 0.01 \), single pulse

Normalized Transient Thermal Resistance

Pulse Width (s)
Figure A: Gate Charge Test Circuit & Waveforms

Figure B: Inductive Switching Test Circuit & Waveforms

Figure C: Diode Recovery Test Circuit & Waveforms