General Description

The AOW10N65/AOWF10N65 is fabricated using an advanced high voltage MOSFET process that is designed to deliver high levels of performance and robustness in popular AC-DC applications. By providing low $R_{DS(on)}$, C_{iss} and C_{iss}, along with guaranteed avalanche capability, this device can be adopted quickly into new and existing offline power supply designs.

Product Summary

- V_{DS}: 750V at 150°C
- I_D (at V_{GS}=10V): 10A
- $R_{DS(on)}$ (at V_{GS}=10V): < 1Ω

100% UIS Tested
100% R_g Tested

Absolute Maximum Ratings T_A=25°C unless otherwise noted

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>AOW10N65</th>
<th>AOWF10N65</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain-Source Voltage</td>
<td>V_{DS}</td>
<td>650</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Gate-Source Voltage</td>
<td>V_{GS}</td>
<td>±30</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Continuous Drain Current</td>
<td>I_D, T_J=25°C</td>
<td>10</td>
<td>10*</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>I_D, T_J=100°C</td>
<td>6.2</td>
<td>6.2*</td>
<td>A</td>
</tr>
<tr>
<td>Pulsed Drain Current C</td>
<td>I_{DM}</td>
<td>36</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Avalanche Current C</td>
<td>I_{AR}</td>
<td>3.4</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Repetitive avalanche energy C</td>
<td>E_{AR}</td>
<td>173</td>
<td></td>
<td>mJ</td>
</tr>
<tr>
<td>Single pulsed avalanche energy D</td>
<td>E_{AS}</td>
<td>347</td>
<td></td>
<td>mJ</td>
</tr>
<tr>
<td>Power Dissipation B</td>
<td>P_D, T_J=25°C</td>
<td>250</td>
<td>28</td>
<td>W</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>W/°C</td>
</tr>
<tr>
<td>Junction and Storage Temperature Range</td>
<td>T_J, T_{STG}</td>
<td>-55 to 150</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds</td>
<td>T_L</td>
<td>300</td>
<td></td>
<td>°C</td>
</tr>
</tbody>
</table>

Thermal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>AOW10N65</th>
<th>AOWF10N65</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Junction-to-Ambient A/W</td>
<td>R_{JA}</td>
<td>65</td>
<td>65</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Case-to-sink A/W</td>
<td>R_{JC}</td>
<td>0.5</td>
<td>--</td>
<td>°C/W</td>
</tr>
<tr>
<td>Maximum Junction-to-Case A/W</td>
<td>R_{JC}</td>
<td>0.5</td>
<td>4.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

* Drain current limited by maximum junction temperature.
Electrical Characteristics (T_J=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV_DSS</td>
<td>Drain-Source Breakdown Voltage</td>
<td>I_D=250μA, V_GS=0V, T_J=25°C</td>
<td>650</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_D=250μA, V_GS=0V, T_J=150°C</td>
<td>750</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>BV_DSS/ΔT,J</td>
<td>Zero Gate Voltage Drain Current</td>
<td>I_D=250μA, V_GS=0V</td>
<td>0.75</td>
<td></td>
<td></td>
<td>V/°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_GS=520V, T_J=125°C</td>
<td>10</td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_DS(min)</td>
<td>Gate-Body leakage current</td>
<td>V_GS=0V, V_DS≤30V</td>
<td>±100</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_GS=5V, I_D=250µA</td>
<td>3</td>
<td>4</td>
<td>4.5</td>
<td>V</td>
</tr>
<tr>
<td>R_D(ON)</td>
<td>Static Drain-Source On-Resistance</td>
<td>I_D=10V, I_P=5A</td>
<td>0.77</td>
<td>1</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_GS=40V, I_P=5A</td>
<td>13</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>V_DS</td>
<td>Forward Transconductance</td>
<td>V_GS=10V, I_D=250µA</td>
<td>0.73</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_P=1A, V_GS=0V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum Body-Diode Continuous Current</td>
<td>I_S=1A, V_RS=0V</td>
<td>10</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum Body-Diode Pulsed Current</td>
<td>I_S=1A, V_RS=0V</td>
<td>36</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DYNAMIC PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciss</td>
<td>Input Capacitance</td>
<td>V_GS=0V, V_DS=25V, f=1MHz</td>
<td>1095</td>
<td>1369</td>
<td>1645</td>
<td>pF</td>
</tr>
<tr>
<td>Coss</td>
<td>Output Capacitance</td>
<td>V_GS=0V, V_DS=25V, f=1MHz</td>
<td>80</td>
<td>118</td>
<td>154</td>
<td>pF</td>
</tr>
<tr>
<td>Crss</td>
<td>Reverse Transfer Capacitance</td>
<td>V_GS=0V, V_DS=25V, f=1MHz</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>pF</td>
</tr>
<tr>
<td>Rg</td>
<td>Gate resistance</td>
<td>V_GS=0V, V_DS=0V, f=1MHz</td>
<td>1.7</td>
<td>3.5</td>
<td>5.5</td>
<td>Ω</td>
</tr>
<tr>
<td>SWITCHING PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qg</td>
<td>Total Gate Charge</td>
<td>V_GS=10V, V_DS=520V, I_D=10A</td>
<td>22</td>
<td>27.7</td>
<td>33</td>
<td>nC</td>
</tr>
<tr>
<td>Qgs</td>
<td>Gate Source Charge</td>
<td>V_GS=10V, V_DS=520V, I_D=10A</td>
<td>6</td>
<td>7.4</td>
<td>9</td>
<td>nC</td>
</tr>
<tr>
<td>Qgd</td>
<td>Gate Drain Charge</td>
<td>V_GS=10V, V_DS=520V, I_D=10A</td>
<td>5.5</td>
<td>11.3</td>
<td>17</td>
<td>nC</td>
</tr>
<tr>
<td>t_D(μs)</td>
<td>Turn-On DelayTime</td>
<td>V_GS=10V, V_DS=325V, I_D=10A,</td>
<td>30</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_D=25Ω</td>
<td>61</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_D(μs)</td>
<td>Turn-Off DelayTime</td>
<td>V_GS=10V, V_DS=325V, I_D=10A,</td>
<td>74</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_D=25Ω</td>
<td>53</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_D</td>
<td>Turn-Off Fall Time</td>
<td>I_D=10A, dI/dt=100A/µs, V_GS=100V</td>
<td>255</td>
<td>320</td>
<td>385</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L=60mH, I_D=3.4A, V_DD=150V, R_G=25Ω, Starting T_J=25°C</td>
<td>4.8</td>
<td>6</td>
<td>7.2</td>
<td>µC</td>
</tr>
<tr>
<td>Qv</td>
<td>Body Diode Reverse Recovery Time</td>
<td>I_D=10A, dI/dt=100A/µs, V_GS=100V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. The value of R_{θ JA} is measured with the device in a still air environment with T_J=25°C.
B. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C. Ratings are based on low frequency and duty cycles to keep initial T_J=25°C.
D. The R_{θ JA} is the sum of the thermal impedence from junction to case R_{θ JC} and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse rating.
G. L=60mH, I_D=3.4A, V_DD=150V, R_G=25Ω, Starting T_J=25°C

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region Characteristics

Fig 2: Transfer Characteristics

Fig 3: On-Resistance vs. Drain Current and Gate Voltage

Fig 4: On-Resistance vs. Junction Temperature

Fig 5: Break Down vs. Junction Temperature

Fig 6: Body-Diode Characteristics (Note E)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area for AOW10N65 (Note F)

Figure 10: Maximum Forward Biased Safe Operating Area for AOWF10N65 (Note F)

Figure 11: Current De-rating (Note B)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Normalized Maximum Transient Thermal Impedance for AOW10N65 (Note F)

Figure 13: Normalized Maximum Transient Thermal Impedance for AOWF10N65 (Note F)