AOW360A70/AOWF360A70
700V, αMOS™ N-Channel Power Transistor

General Description

- Proprietary αMOS™ technology
- Low R_{D(S,ON)}
- Optimized switching parameters for better EMI performance
- Enhanced body diode for robustness and fast reverse recovery

Applications

- Flyback for SMPS
- Charger, PD Adapter, TV, lighting.

Product Summary

- V_{DS} @ T_{J,max} 800V
- I_{DM} 48A
- R_{D(S,ON),max} < 0.36Ω
- Q_{g,typ} 22.5nC
- E_{oss} @ 400V 2.8μJ

100% UIS Tested
100% H_{B} Tested

Orderable Part Number	Package Type	Form	Minimum Order Quantity
AOW360A70 | TO262 | Tube | 1000
AOWF360A70 | TO262F | Tube | 1000

Parameter	Symbol	AOW360A70	AOWF360A70	Units
Drain-Source Voltage | V_{DS} | 700 | | V |
Gate-Source Voltage | V_{GS} | ±20 | | V |
Continuous Drain Current | T_{C=25°C} | 12 | 12* | A |
 | T_{C=100°C} | 7.6 | 7.6* | |
Pulsed Drain Current | I_{RM} | 48 | | A |
Avalanche Current | I_{AR} | 3.4 | | |
Repetitive avalanche energy | E_{AR} | 5.8 | | mJ |
Single pulsed avalanche energy | E_{AS} | 50 | | mJ |
MOSFET dv/dt ruggedness | dv/dt | 100 | | V/ns |
Peak diode recovery dv/dt | | 20 | | |
Power Dissipation | T_{J=25°C} | 156 | 29.5 | W |
 | | 1.25 | 0.23 | W/°C |
Junction and Storage Temperature Range | T_J, T_{STG} | -55 to 150 | | °C |
Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds | T_{L} | 300 | | °C |

Thermal Characteristics

Parameter	Symbol	AOW360A70	AOWF360A70	Units
Maximum Junction-to-Ambient | R_{th JA} | 65 | 65 | °C/W |
Maximum Case-to-sink | R_{th CS} | 0.5 | 0.5 | °C/W |
Maximum Junction-to-Case | R_{th JC} | 0.8 | 4.2 | °C/W |

* Drain current limited by maximum junction temperature.
Electrical Characteristics (T_J=25°C unless otherwise noted)

STATIC PARAMETERS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV_DSS</td>
<td>Drain-Source Breakdown Voltage</td>
<td>I_D=250μA, V_{GS}=0V, T_J=25°C</td>
<td>700</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I_D=25μA, V_{GS}=0V, T_J=150°C</td>
<td>800</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>BV_DSS/△T_J</td>
<td>Breakdown Voltage Temperature Coefficient</td>
<td>I_D=250μA, V_{GS}=0V</td>
<td>0.6</td>
<td></td>
<td></td>
<td>V/°C</td>
</tr>
<tr>
<td>IS</td>
<td>Zero Gate Voltage Drain Current</td>
<td>V_{GS}=700V, V_{DS}=0V</td>
<td>1</td>
<td></td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>IS</td>
<td>Gate-Body leakage current</td>
<td>V_{DS}=0V, V_{GS}=20V</td>
<td>±100</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>V_DSSDV</td>
<td>Gate Threshold Voltage</td>
<td>V_{DS}=5V, I_D=250μA</td>
<td>4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>R_DS(DON)</td>
<td>Static Drain-Source On-Resistance</td>
<td>V_{GS}=10V, I_D=6A</td>
<td>0.316</td>
<td>0.36</td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>g_I</td>
<td>Forward Transconductance</td>
<td>V_{DS}=10V, I_D=6A</td>
<td>10</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>V_FD</td>
<td>Diode Forward Voltage</td>
<td>I_F=6A, V_{DS}=0V</td>
<td>0.86</td>
<td>1.2</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_S</td>
<td>Maximum Body-Diode Continuous Current</td>
<td>V_{GS}=0V, V_{DS}=100V, f=1MHz</td>
<td>12</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_FM</td>
<td>Maximum Body-Diode Pulsed Current</td>
<td>V_{GS}=0V, V_{DS}=100V, f=1MHz</td>
<td>48</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DYNAMIC PARAMETERS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciss</td>
<td>Input Capacitance</td>
<td>V_{DS}=0V, V_{GS}=100V, f=1MHz</td>
<td>1360</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Coss</td>
<td>Output Capacitance</td>
<td>V_{DS}=0V, V_{GS}=480V, f=1MHz</td>
<td>34</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Ciss(V)</td>
<td>Effective output capacitance, energy related²</td>
<td>V_{GS}=0V, V_{DS}=0 to 480V, f=1MHz</td>
<td>32</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>Coss(V)</td>
<td>Effective output capacitance, time related¹</td>
<td>V_{GS}=0V, V_{DS}=100V, f=1MHz</td>
<td>147</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>CGS</td>
<td>Reverse Transfer Capacitance</td>
<td>V_{GS}=0V, V_{DS}=100V, f=1MHz</td>
<td>1.7</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>R_g</td>
<td>Gate resistance</td>
<td>f=1MHz</td>
<td>2</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
</tbody>
</table>

SWITCHING PARAMETERS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_G</td>
<td>Total Gate Charge</td>
<td>V_{GS}=10V, V_{DS}=480V, I_D=6A</td>
<td>22.5</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Q_GS</td>
<td>Gate Source Charge</td>
<td>V_{GS}=10V, V_{DS}=480V, I_D=6A</td>
<td>9</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>Q_Gd</td>
<td>Gate Drain Charge</td>
<td>V_{GS}=0V, V_{DS}=250μA</td>
<td>6.3</td>
<td></td>
<td></td>
<td>nC</td>
</tr>
<tr>
<td>T_D(on)</td>
<td>Turn-On DelayTime</td>
<td>V_{GS}=10V, V_{DS}=400V, I_D=6A, R_D=5Ω</td>
<td>24.5</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_D(Off)</td>
<td>Turn-Off DelayTime</td>
<td>R_D=5Ω</td>
<td>34.5</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_R</td>
<td>Turn-Off Fall Time</td>
<td>V_{GS}=0V, V_{DS}=250μA</td>
<td>13</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>T_BR</td>
<td>Body Diode Reverse Recovery Time</td>
<td>I_D=6A, dI/dt=100A/μs, V_{DS}=400V</td>
<td>310</td>
<td></td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>Q_B</td>
<td>Body Diode Reverse Recovery Charge</td>
<td>I_D=6A, dI/dt=100A/μs, V_{DS}=400V</td>
<td>24.5</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. The value of R_{JJA} is measured with the device in a still air environment with T_A=25°C.
B. The power dissipation P_D is based on T_{J(MAX)}=150°C in a TO225 package, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature T_{J(MAX)}=150°C.
D. The R_{JJA} is the sum of the thermal impedance from junction to case R_{JC} and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse rating.
G. L=60mH, I_{AS}=1.3A, R_g=25Ω, Starting T_J=25°C.
H. C_{iss} is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{(BR)DSS}.
I. C_{oss} is a fixed capacitance that gives the same charging time as C_{iss} while V_{DS} is rising from 0 to 80% V_{(BR)DSS}.

APPLICATIONS OR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics

Figure 2: Transfer Characteristics

Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Figure 4: On-Resistance vs. Junction Temperature

Figure 5: Break Down vs. Junction Temperature

Figure 6: Body-Diode Characteristics
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Coss stored Energy

Figure 10: Current De-rating (Note F)

Figure 11: Maximum Forward Biased Safe Operating Area for AOW360A70 (Note F)

Figure 12: Maximum Forward Biased Safe Operating Area for AOWF360A70 (Note F)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 13: Normalized Maximum Transient Thermal Impedance for AOW360A70(Note F)

Figure 14: Normalized Maximum Transient Thermal Impedance for AOWF360A70 (Note F)

\[D = \frac{T_{on}}{T_{PK}} \]

\[Z_{q JC} = \frac{T_{PK}}{P_{DM} Z_{JC}} \]

\[R_{JC} = 0.8 \degree C/W \]

In descending order

\[D = 0.5, 0.3, 0.1, 0.05, 0.02, 0.01, \text{ single pulse} \]