


# AIM705M25V1

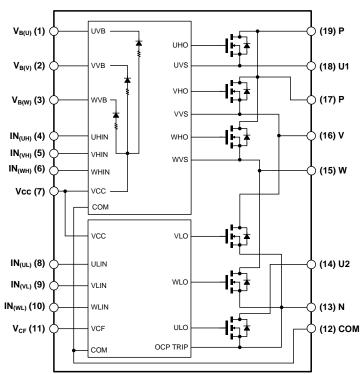
Intelligent Power Module

#### **External View**



Size: 18 x 7.5 x 2.5 mm




#### **Features**

- 250V,  $R_{DS(on)} = 1.5\Omega$  (Max)
- Advanced MOSFET technology for motor drives
- Low loss and EMI
- 3-phase Inverter module including HVIC drivers
- Wide input interface (3-18V), Schmitt trigger receiver circuit (Active High)
- · Built-in bootstrap diodes with integrated current-limiting resistor
- Control supply under-voltage lockout protection (UVLO)
- Over-temperature (OT) protection
- Over-current protection (OCP)
- Controllable fault out signal (V<sub>CF</sub>) corresponding to OC, UV, OT fault
- Isolation ratings of 1500Vrms/min

### **Applications**

- AC 90~120Vrms class low power motor drives
- Fan motors

### **Internal Equivalent Circuit / Pin Configuration**





# **Ordering Information**

| Part Number | Temperature Range | Package | Description |
|-------------|-------------------|---------|-------------|
| AIM705M25V1 | -40°C to 150°C    | IPM-7   | N/A         |



AOS Green Products use reduced levels of Halogens, and are also RoHS compliant.

Please visit <a href="https://aosmd.com/sites/default/files/media/AOSGreenPolicy.pdf">https://aosmd.com/sites/default/files/media/AOSGreenPolicy.pdf</a> for additional information.

### **Pin Configuration**

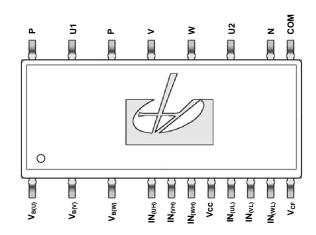



Figure 1. Pin Configuration

### **Pin Description**

| Pin Number | Pin Name           | Pin Function                                      |  |
|------------|--------------------|---------------------------------------------------|--|
| 1          | V <sub>B(U)</sub>  | High-Side Bias Voltage for U-phase MOSFET Driving |  |
| 2          | V <sub>B(V)</sub>  | High-Side Bias Voltage for V-phase MOSFET Driving |  |
| 3          | V <sub>B(W)</sub>  | High-Side Bias Voltage for W-phase MOSFET Driving |  |
| 4          | IN <sub>(UH)</sub> | Signal Input for High-Side U-phase                |  |
| 5          | IN <sub>(VH)</sub> | Signal Input for High-Side V-phase                |  |
| 6          | IN <sub>(WH)</sub> | Signal Input for High-Side W-phase                |  |
| 7          | Vcc                | Control Supply Voltage                            |  |
| 8          | IN <sub>(UL)</sub> | Signal Input for Low-Side U-phase                 |  |
| 9          | IN <sub>(VL)</sub> | Signal Input for Low-Side V-phase                 |  |
| 10         | IN <sub>(WL)</sub> | Signal Input for Low-Side W-phase                 |  |
| 11         | VcF                | Controllable Fault Output                         |  |
| 12         | СОМ                | Common Supply Ground                              |  |
| 13         | N                  | Negative DC-Link Input                            |  |
| 14         | U2                 | Output for U-phase (connect to U1)                |  |
| 15         | W                  | Output for W-phase                                |  |
| 16         | V                  | Output for V-phase                                |  |
| 17         | Р                  | Positive DC-Link Input                            |  |
| 18         | U1                 | Output for U-phase (connect to U2)                |  |
| 19         | Р                  | Positive DC-Link Input                            |  |

Rev.1.0 January 2024 **www.aosmd.com** Page 2 of 11



# **Absolute Maximum Ratings** (T<sub>J</sub>=25°C, unless otherwise specified)

| Symbol               | Parameter                              | Conditions                                                                                                                       | Ratings        | Units            |  |  |  |  |
|----------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|--|--|--|--|
| Inverter             |                                        |                                                                                                                                  |                |                  |  |  |  |  |
| BV <sub>DSS</sub>    | MOSFET Breakdown Voltage               | T <sub>J</sub> =25°C                                                                                                             | 250            | V                |  |  |  |  |
| I <sub>D</sub>       | MOSFET Drain Current (Continuous)      | T <sub>C</sub> =25°C<br>T <sub>C</sub> =80°C                                                                                     | 1.5            | A<br>A           |  |  |  |  |
| IDP                  | MOSFET Drain Current (Pulsed)          | Tc=80 C                                                                                                                          | 3              | A                |  |  |  |  |
| PD                   | Maximum Power Dissipation              | T <sub>C</sub> =25°C                                                                                                             | 8              | W                |  |  |  |  |
| TJ                   | Operating Junction Temperature         |                                                                                                                                  | -40 to 150     | °C               |  |  |  |  |
| Control (F           | Protection)                            |                                                                                                                                  |                |                  |  |  |  |  |
| Vcc                  | Control Supply Voltage                 | V <sub>CC</sub> -COM                                                                                                             | -0.3 ~ 20      | V                |  |  |  |  |
| V <sub>BS</sub>      | High-Side Control Bias Voltage         | $V_{B(U)}$ -U, $V_{B(V)}$ -V, $V_{B(W)}$ -W                                                                                      | -0.3 ~ 20      | V                |  |  |  |  |
| Vin                  | Input Voltage                          | IN <sub>(UH)</sub> , IN <sub>(VH)</sub> , IN <sub>(WH)</sub> , IN <sub>(UL)</sub> , IN <sub>(VL)</sub> , IN <sub>(WL)</sub> -COM | -0.3 ~ Vcc+0.5 | V                |  |  |  |  |
| V <sub>CF</sub>      | Fault Output Supply Voltage            | Applied between V <sub>CF</sub> -COM                                                                                             | -0.3 ~ 5.5     | V                |  |  |  |  |
| Thermal F            | Resistance                             |                                                                                                                                  |                |                  |  |  |  |  |
| R <sub>th(j-c)</sub> | Junction to Case Thermal Resistance    | All operating condition                                                                                                          | 12.5           | °C/W             |  |  |  |  |
| R <sub>th(j-a)</sub> | Junction to Ambient Thermal Resistance | All operating condition                                                                                                          | 39             | °C/W             |  |  |  |  |
| Total Sys            | tem                                    |                                                                                                                                  |                |                  |  |  |  |  |
| Tc                   | Module Case Operation Temperature      | Measurement point of T <sub>C</sub> is provided in Figure 2 -30 to 125                                                           |                | °C               |  |  |  |  |
| T <sub>STG</sub>     | Storage Temperature                    |                                                                                                                                  | -40 to 150     | °C               |  |  |  |  |
| V <sub>ISO</sub>     | Isolation Voltage                      | 60Hz, sinusoidal, AC 1min, between connected all pins and heat sink plate                                                        | 1500           | V <sub>rms</sub> |  |  |  |  |

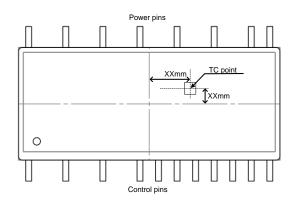



Figure 2. Tc Measurement Point

### **Recommended Operation Conditions**

| Symbol                                        | Parameter                       | Conditions                                                                       | Min. | Тур. | Max  | Units |
|-----------------------------------------------|---------------------------------|----------------------------------------------------------------------------------|------|------|------|-------|
| V <sub>PN</sub>                               | Bus Supply Voltage              | Applied between P-N                                                              | 0    | 140  | 200  | V     |
| Vcc                                           | Control Supply Voltage          | Applied between Vcc-COM                                                          | 13.5 | 15.0 | 16.5 | V     |
| V <sub>BS</sub>                               | High-Side Bias Voltage          | Applied between V <sub>B(U)</sub> -U, V <sub>B(V)</sub> -V, V <sub>B(W)</sub> -W | 13.5 | 15.0 | 16.5 | V     |
| dV <sub>CC</sub> /dt,<br>dV <sub>BS</sub> /dt | Control Supply Variation        |                                                                                  | -1   | -    | 1    | V/us  |
| t <sub>dead</sub>                             | Arm Shoot-Through Blocking Time | For each input signal                                                            | 1.5  | -    | -    | μs    |
| f <sub>PWM</sub>                              | PWM Input Frequency             | -40°C < T <sub>J</sub> < 150°C                                                   | -    | 16   | -    | kHz   |
| PW <sub>IN(ON)</sub>                          | Minimum Input Pulse Width (1)   |                                                                                  | 0.7  | -    | -    | μs    |
| PW <sub>IN(OFF)</sub>                         |                                 |                                                                                  | 0.7  | -    | -    | μs    |

#### Note:

Rev.1.0 January 2024 **www.aosmd.com** Page 3 of 11

<sup>1.</sup> IPM may not respond if the input pulse width is less than  $PW_{IN(ON)}$ ,  $PW_{IN(OFF)}$ .



### Electrical Characteristics (T<sub>J</sub>=25°C, unless otherwise specified)

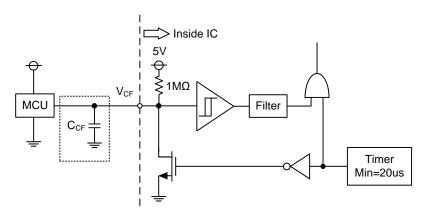
| Symbol               | Parameter                                   | Conditions                                                     |                                             | Min. | Тур. | Max  | Units |
|----------------------|---------------------------------------------|----------------------------------------------------------------|---------------------------------------------|------|------|------|-------|
| Inverter             |                                             |                                                                |                                             |      |      |      |       |
| BV <sub>DSS</sub>    | MOSFET Breakdown<br>Voltage                 | I <sub>D</sub> =1mA, V <sub>IN</sub> =0V, T <sub>J</sub> =25°C |                                             | 250  |      |      | V     |
| IDSS                 | Drain-Source Leakage<br>Current             | V <sub>IN</sub> =0V, V <sub>DS</sub> =250V                     |                                             | -    | -    | 100  | μΑ    |
| R <sub>DS(on)</sub>  | Drain-Source On-State<br>Resistance         | Vcc=V <sub>BS</sub> =15V, V <sub>IN</sub> =5V                  | I <sub>D</sub> =1.0A                        | -    | 1.25 | 1.5  | Ω     |
| V <sub>SD</sub>      | MOSFET Body Diode<br>Forward Voltage        | Vcc=V <sub>BS</sub> =15V, V <sub>IN</sub> =0                   | I <sub>SD</sub> =1.0A                       | -    | 0.9  | 1.3  | V     |
| t <sub>OFF</sub>     |                                             |                                                                |                                             | -    | 1100 | -    | ns    |
| t <sub>f</sub>       |                                             | V <sub>PN</sub> =150V, V <sub>CC</sub> =V <sub>BS</sub> =15V   |                                             | -    | 40   | -    | ns    |
| ton                  | Switching Times                             | I <sub>D</sub> =1A, V <sub>IN</sub> =0V↔5V                     |                                             | -    | 750  | -    | ns    |
| t <sub>r</sub>       |                                             | Inductive load (high-side)                                     |                                             | -    | 60   | -    | ns    |
| t <sub>rr</sub>      |                                             |                                                                |                                             | -    | 120  | -    | ns    |
| Control (P           | rotection)                                  |                                                                |                                             |      |      |      |       |
| Iqcc                 | Quiescent Vcc Supply<br>Current             | Vcc=15V, IN(UL, VL, WL)=0V                                     | Vcc-COM                                     | -    | -    | 1.5  | mA    |
| IQBS                 | Quiescent V <sub>BS</sub> Supply<br>Current | V <sub>BS</sub> =15V, IN <sub>(UH, VH, WH)</sub> =0V           | $V_{B(U)}$ -U, $V_{B(V)}$ -V, $V_{B(W)}$ -W | -    | -    | 0.3  | mA    |
| UVcct                |                                             | Trip Level                                                     |                                             | 10.3 | 11.4 | 12.5 | V     |
| UVccr                | Supply Circuit Under-                       | Reset Level                                                    |                                             | 10.8 | 11.9 | 13.0 | V     |
| UV <sub>BST</sub>    | Voltage Protection                          | Trip Level                                                     |                                             | 9.0  | 10.0 | 11.0 | V     |
| UV <sub>BSR</sub>    |                                             | Reset Level                                                    |                                             | 10.0 | 11.0 | 12.0 | V     |
| Voc                  | Over-Current Protection                     | Vcc=15V                                                        |                                             | 0.9  | 1.0  | 1.1  | V     |
| toc_blk              | Over-Current Blanking Time                  |                                                                |                                             | -    | 2    | -    | μs    |
| OT <sub>T</sub>      | Over-Temperature                            | ,                                                              | Level                                       | 110  | 130  | 150  | °C    |
| OTHYS                | Protection (2)                              | LVIC Temperature Hyste                                         | eresis of Trip Reset                        | -    | 30   | -    | °C    |
| Vcfh                 | Fault Output Voltage                        | V <sub>N</sub> =0V                                             |                                             | 4.9  | -    | -    | V     |
| V <sub>CFL</sub>     |                                             | V <sub>N</sub> =1V                                             |                                             | -    | -    | 0.5  | V     |
| V <sub>CF+</sub>     | CF positive going threshold                 |                                                                |                                             | -    | 1.9  | 2.2  | V     |
| V <sub>CF</sub> -    | CF negative going threshold                 |                                                                |                                             | 0.8  | 1.1  | -    | V     |
| t <sub>FO</sub>      | Fault Output Pulse Width (3)                |                                                                |                                             | 20   | -    | -    | μs    |
| lin                  | Input Current                               | V <sub>IN</sub> =5V                                            |                                             | -    | 720  | 950  | μΑ    |
| V <sub>th(on)</sub>  | ON Threshold Voltage                        | Applied between IN(UH), IN                                     | -                                           | -    | 2.5  | V    |       |
| V <sub>th(off)</sub> | OFF Threshold Voltage                       | IN <sub>(VL)</sub> , IN <sub>(WL)</sub> –COM                   |                                             | 0.8  | -    | -    | V     |
| Bootstrap            |                                             |                                                                |                                             |      |      |      |       |
| V <sub>RRM</sub>     | Maximum Repetitive Reverse Voltage          |                                                                |                                             | 600  | -    |      | V     |
| V <sub>F(BSD)</sub>  | Bootstrap Diode Forward Voltage             | I <sub>F</sub> =10mA including voltage drop by limiting        |                                             | -    | 5.0  | -    | V     |
| R <sub>BSD</sub>     | Bootstrap Diode<br>Equivalent Resistance    | resistor                                                       |                                             | -    | 500  | -    | Ω     |

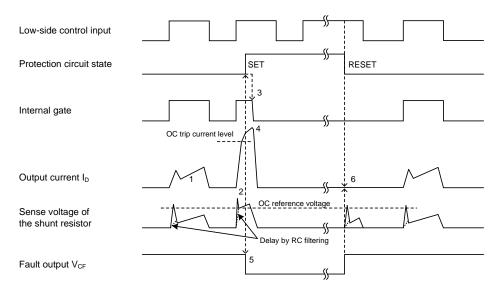
#### Note:

- 2. When the LVIC temperature exceeds OT Trip temperature level ( $OT_T$ ), OT protection is triggered and fault signal outputs.
- 3. At OC detection,  $F_{\text{O}}$  pulse width has a fixed width of minimum 20 $\mu s$ .

Rev.1.0 January 2024 **www.aosmd.com** Page 4 of 11

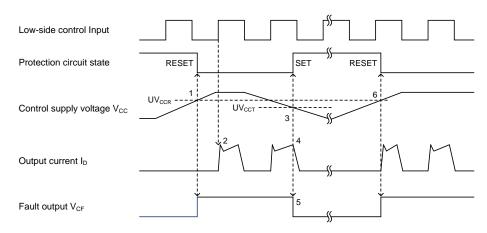






Figure 3. V<sub>CF</sub> Output Circuit

- (1) The V<sub>CF</sub> pin provides an enable functionality that allows it to shut down the all low-side MOSFETs. When the V<sub>CF</sub> pin is in the high state the IPM is able to operate normally. If the V<sub>CF</sub> pin is in a low state, the low-side MOSFETs are turned off until the enable condition is restored.
- (2) In addition, the V<sub>CF</sub> pin can provide the fixed or adjustable pulse width of fault output signal for the OC protection.
- (3) If the  $V_{\text{CF}}$  pin is left, the pulse width is fixed at minimum 20us.
- (4) If a capacitor is connected, the pulse width can be adjusted according to the capacitor value. The length of pulse width is determined by the following formula;
  - $t_{FO} = -(1M\Omega^*C_{CF})^*ln(1-V_{CF}+/5V) + 100ns + 20us(min.)$
  - ex)  $C_{CF}=1nF$ ,  $t_{FO}\approx500us$ . Recommended parameters in the design are  $C_{CF}$  of  $\leq 1nF$ .

Rev.1.0 January 2024 **www.aosmd.com** Page 5 of 11

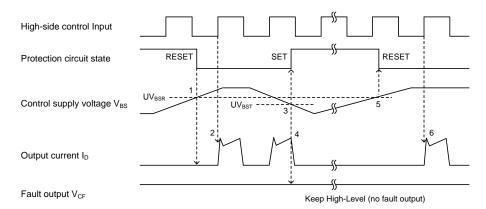



### **Time Charts of the IPM Protective Function**



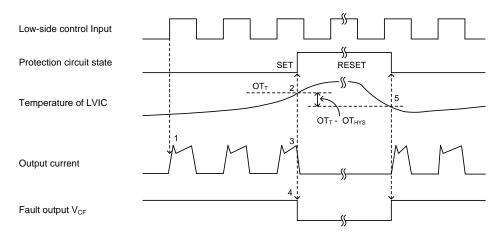
- (1) Normal operation: MOSFET turns on and output current.
- (2) Over-current detection (OCP triggered).
- (3) All low-side MOSFETs' gate are turned off.
- (4) Accordingly, all low-side MOSFETs are turned off.
- (5) Fault signal outputs.  $F_O$  duration time ( $t_{FO}$ ) is minimum 20 $\mu$ s.
- (6) Fault output finishes. Normal operation starts according to the input control signal...

Figure 4. Over-Current Protection
(Low-side Operation Only with External Shunt Resistor and RC Filter)




- (1) Supply voltage  $V_{CC}$  becomes higher than under-voltage reset level (UV<sub>CCR</sub>), and MOSFETs are turned on by the next ON signal.
- (2) Normal operation: MOSFETs turn-on and output current.
- (3)  $V_{\text{CC}}$  level drops to under-voltage trip level (UV<sub>CCT</sub>).
- (4) All low-side MOSFETs are turned off regardless of control input condition.
- (5) F<sub>O</sub> output is generated, and F<sub>O</sub> stays low as long as V<sub>CC</sub> is below UV<sub>CCR</sub>.
- (6) V<sub>CC</sub> level reaches UV<sub>CCR</sub>. Normal operation starts according to the input control signal.

Figure 5. Under-Voltage Protection (Low-side, UVcc)


Rev.1.0 January 2024 **www.aosmd.com** Page 6 of 11





- (1) Control supply voltage V<sub>BS</sub> rises. After the voltage reaches under-voltage reset level (UV<sub>BSR</sub>), MOSFETs are turned on by the next ON signal.
- (2) Normal operation: MOSFETs turn on and output current.
- (3) V<sub>BS</sub> level drops to under-voltage trip level (UV<sub>BST</sub>).
- (4) All high-side MOSFETs are turned off regardless of control input condition.
- (5) V<sub>BS</sub> level reaches UV<sub>BSR</sub>.
- (6) Normal operation starts according to the input control signal.

Figure 6. Under-Voltage Protection (High-side, UV<sub>BS</sub>)



- (1) Normal operation: MOSFETs turn on and output current.
- (2) LVIC temperature exceeds over-temperature trip level (OT<sub>T</sub>).
- (3) All low-side MOSFETs are turned off regardless of control input condition.
- (4)  $F_0$  output is generated, and  $F_0$  stays low as long as LVIC temperature is over  $OT_T$ .
- (5) LVIC temperature drops to over-temperature reset level (OT<sub>T</sub>-OT<sub>HYS</sub>). Normal operation starts according to the input control signal.

Figure 7. Over-Temperature Protection (Low-side, Detecting LVIC Temperature)

Rev.1.0 January 2024 **www.aosmd.com** Page 7 of 11



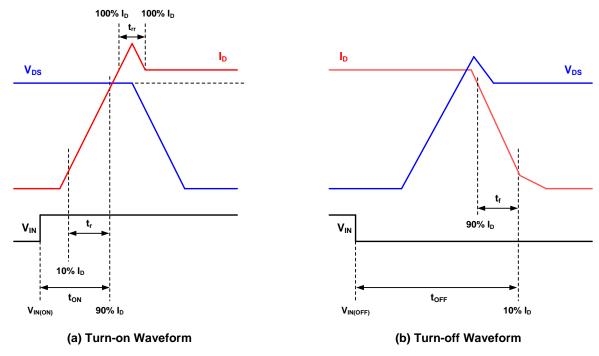
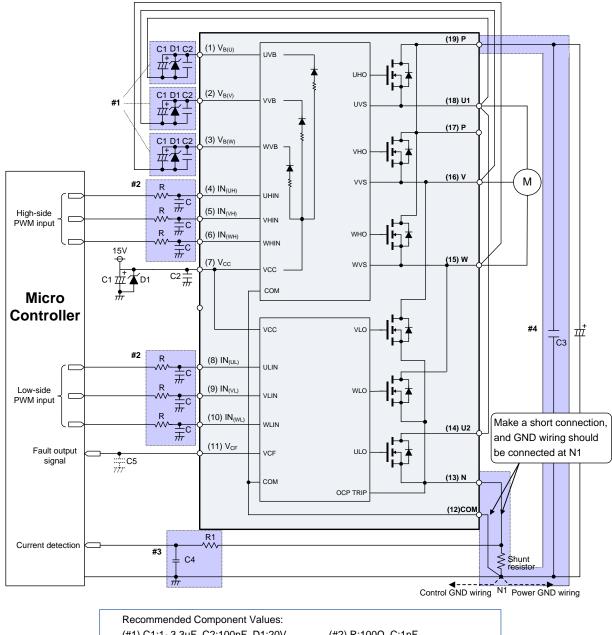




Figure 8. Switching Times Definition

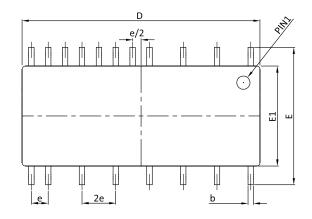
Rev.1.0 January 2024 **www.aosmd.com** Page 8 of 11

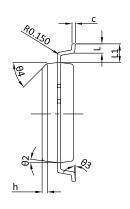


### **Example of Application Circuit**

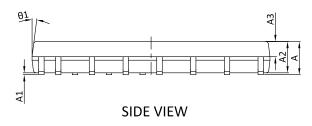


(#1) C1:1~3.3µF, C2:100nF, D1:20V


(#3) R1:1kΩ, C4:2nF

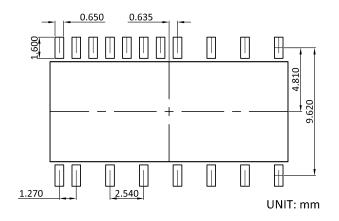

- (#2) R:100Ω, C:1nF
- (#4) C3:0.1~0.22µF
- If the control GND is connected with the power GND by common broad pattern, it may cause malfunction by power GND fluctuation. It is recommended to connect the control GND and power GND at a point (N1), near the terminal of shunt resistor.
- A zener diode D1 (20V/1W) is recommended between each pair of control supply pins to prevent surge destruction.
- Prevention of surge destruction can further be improved by placing the bus capacitor as close to pin P and N1 as possible. Generally a 0.1~0.22µF snubber capacitor C3 between the P-N1 terminals is recommended.
- When the current detection function is utilized by using the shunt resistor, the RC filter (R1 and C4) needs to be inserted to avoid the voltage spike noise in the current detection circuit. C4 should be placed as close to the controller as possible.
- It is recommended that all capacitors are mounted as close to the IPM as possible. (C1: electrolytic type with good temperature and frequency characteristics. C2: ceramic type with 0.1µF, good temperature, frequency and DC bias characteristics).
- To prevent malfunction, the layout to each input should be as short as possible. When using the RC coupling circuit (R: 100Ω, C: 1nF), place it as close to the IPM input pins as possible, and make sure the input signal levels meet the required turn-on and turn-off threshold voltages.
- The V<sub>CF</sub> pin can provide the fault output signal with the fixed or adjustable pulse width for the OC protection. If the V<sub>CF</sub> pin is left, the pulse width is fixed at minimum 20us. If a capacitor C5 is connected, the pulse width can be adjusted according to the capacitor value. For the design guide, please refer to the Figure 3.

www.aosmd.com Page 9 of 11 Rev.1.0 January 2024




# Package Dimensions, IPM-7






SIDE VIEW



**TOP VIEW** 

#### LAND PATTERN RECOMMENDATIONS



|         | DIMENSION IN MILLIMETRES |          |        | DIMENSION IN INCHS  |       |       |  |
|---------|--------------------------|----------|--------|---------------------|-------|-------|--|
| SYMBOLS | MIN.                     | NOM.     | MAX.   | MIN.                | NOM.  | MAX.  |  |
| Α       | 2.304                    | 2.504    | 2.704  | 0.091               | 0.099 | 0.106 |  |
| A1      | 0.050                    | 0.150    | 0.250  | 0.002               | 0.006 | 0.010 |  |
| A2      | 2.254                    | 2.354    | 2.454  | 0.089               | 0.093 | 0.097 |  |
| A3      | 1.050                    | 1.150    | 1.250  | 0.041               | 0.045 | 0.049 |  |
| D       | 17.800                   | 17.900   | 18.000 | 0.701 0.705 0.709   |       |       |  |
| Е       | 10.140                   | 10.340   | 10.540 | 0.399 0.407 0.415   |       |       |  |
| E1      | 7.420                    | 7.520    | 7.620  | 0.292               | 0.296 | 0.300 |  |
| L       | 0.505                    | 0.705    | 0.905  | 0.020               | 0.028 | 0.036 |  |
| L1      | 1.210                    | 1.410    | 1.610  | 0.048 0.056 0.063   |       |       |  |
| e       |                          | 1.270TYP |        | 0.050TYP.           |       |       |  |
| b       |                          | 0.410TYP |        | 0.016TYP.           |       |       |  |
| С       | 0.254TYP.                |          |        | 0.010TYP.           |       |       |  |
| θ1      | 7°TYP.                   |          |        | 7°TYP.              |       |       |  |
| θ2      | 7°TYP.                   |          |        | 7 <sup>o</sup> TYP. |       |       |  |
| θ3      | 0°                       |          | 8°     | 0°                  |       | 8°    |  |
| θ4      | 45°TYP.                  |          |        | 45°TYP.             |       |       |  |
| h       | 0.381TYP.                |          |        | 0.015TYP.           |       |       |  |

#### **NOTES**

- 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS, MOLD FLASH SHOULD BE LESS THAN 6 MIL.
- 2. TOLERANCE 0.100 MILLIMETERS UNLESS OTHERWISE SPECIFIED.
- 3. CONTROLLING DIMENSION IS MILLIMETER, CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

Rev.1.0 January 2024 **www.aosmd.com** Page 10 of 11



#### LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. AOS does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: https://aosmd.com/terms and conditions of sale

#### LIFE SUPPORT POLICY

ALPHA & OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

#### As used herein:

- systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 1. Life support devices or systems are devices or 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.aosmd.com Page 11 of 11 Rev.1.0 January 2024