ALPHA & OMEGA SEMICONDUCTOR 60V Dual P + N-Channel MOSFET									-	
General Description				Product Summary						
The AO4611 uses advanced trench technolo MOSFETs to provide excellent $R_{DS(ON)}$ and logate charge. The complementary MOSFETs may be used to form a level shifted high side switch, and for a host of other applications.			low s	V _{DS} I _D = R _{DS} < 2 < 3	N-Channel V_{DS} (V) = 60V I_{D} = 6.3A (V _{GS} =10V) $R_{DS(ON)}$ < 25mΩ (V _{GS} =10V) < 30mΩ (V _{GS} =4.5V) 100% UIS Tested 100% Rg Tested		P-Channel -60V -4.9A < 42mΩ (V, < 52mΩ (V, 100% UIS 100% Rg 1			
								Gre	en	
SOIC-8 Top View Bottom View Top View Constrained Con										
Absolute Maximum I	Ratings T _A =	25°C unle	ss othe	erwis	se noted					
Parameter			Symbo	ol	Max n-channel		Max p-cha	Units		
Drain-Source Voltage			V _{DS}	60		0	-6	V		
Gate-Source Voltage			V_{GS}	±20		20	±ź	V		
Continuous Drain				6.3		.3	-4.9			
Current ^A	T _A =70°C		I _D	5		5	-3.9		А	
Pulsed Drain Current ^B			I _{DM}		40		-30			
T _A =25°C		P _D		2		2		w		
Power Dissipation T _A =70°C		' D	1.28		28	1.:	vv			
Junction and Storage Temperature Range			T _J , T _{ST}	-55 to 150		-55 to	°C			
Thermal Characteristics: n-channel and p-channel										
Parameter Maximum Junction-to-Ambient ^A t ≤			10s		Symbol	Device	Тур	Max		
		y-State		$R_{ ext{ heta}JA}$	n-ch	48 74	62.5 110	°C/W °C/W		
			y-State		$R_{ ext{ heta}JL}$	n-ch n-ch	35	60	°C/W	
Maximum Junction-To-	Suon-to-Lead Stead		, State		ι×θJL			00	0,00	

Maximum Junction-to-Ambient A

Maximum Junction-to-Ambient A

Maximum Junction-to-Lead ^C

 $\mathsf{R}_{\theta \mathsf{J} \mathsf{A}}$

 $\mathsf{R}_{\theta\mathsf{JL}}$

p-ch

p-ch

p-ch

48

74

35

62.5

110

40

t ≤ 10s

Steady-State

Steady-State

°C/W

°C/W

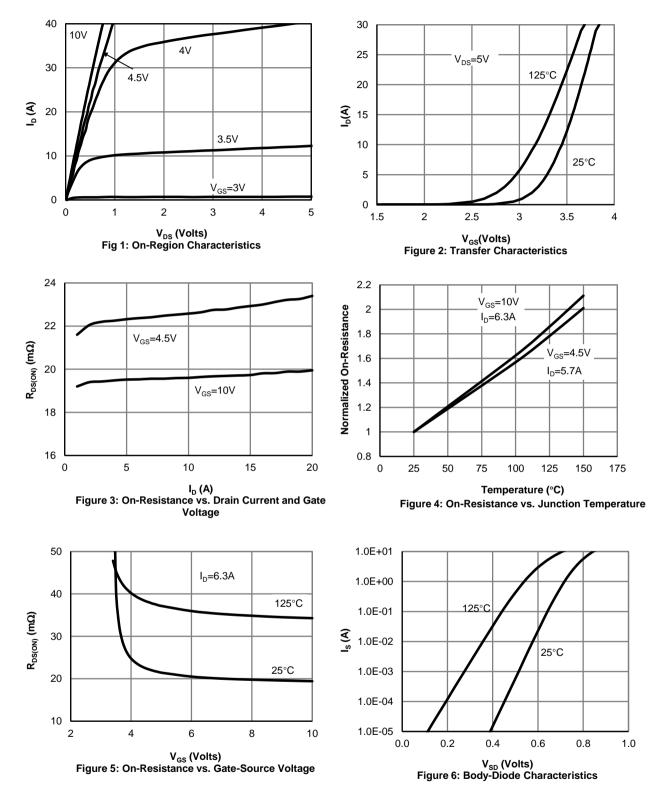
°C/W

N Channel Electrical Characteristics (T₁=25°C unless otherwise noted)

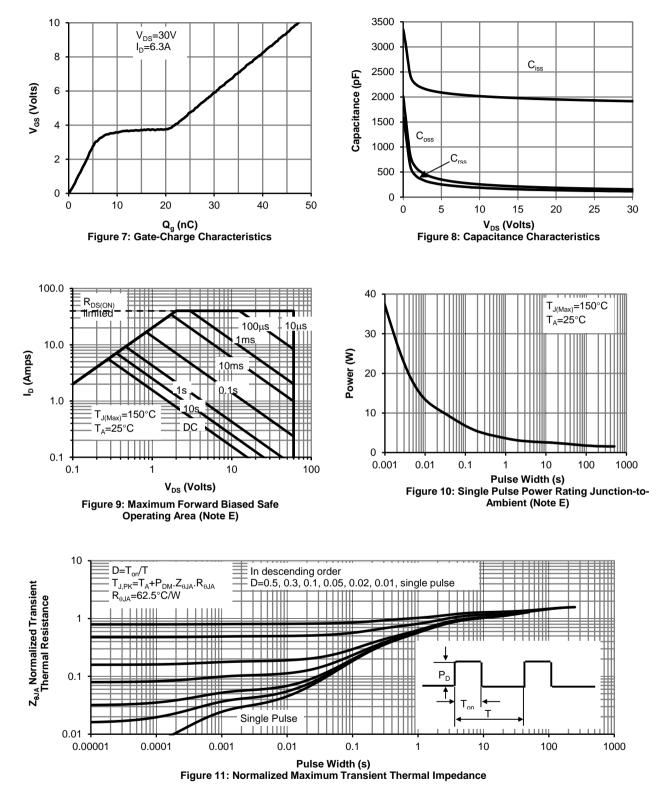
Symbol	Parameter	Conditions		Min	Тур	Мах	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		60			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =48V, V _{GS} =0V				1	μA
	Zero Gale Vollage Drain Current		T _J =55°C			5	μΑ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V				100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250 \mu A$		1.5	2.1	3	V
I _{D(ON)}	On state drain current	V _{GS} =10V, V _{DS} =5V		40			А
	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =6.3A			20	25	mΩ
R _{DS(ON)}			T _J =125°C		34	42	1115.2
		V _{GS} =4.5V, I _D =5.7A			22	30	mΩ
g fs	Forward Transconductance	V _{DS} =5V, I _D =6.3A		27		S	
V _{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.74	1	V	
I _S	Maximum Body-Diode Continuous Current					3	А
DYNAMIC	C PARAMETERS					-	-
C _{iss}	Input Capacitance			1920	2300	pF	
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =30V, f=1MHz V_{GS} =0V, V_{DS} =0V, f=1MHz			155		pF
C _{rss}	Reverse Transfer Capacitance				116		pF
R _g	Gate resistance				0.65	0.8	Ω
SWITCHI	NG PARAMETERS	-				-	-
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =30V, I _D =6.3A			47.6	58	nC
Q _g (4.5V)	Total Gate Charge				24.2	30	nC
Q _{gs}	Gate Source Charge				6		nC
Q _{gd}	Gate Drain Charge				14.4		nC
t _{D(on)}	Turn-On DelayTime	V_{GS} =10V, V_{DS} =30V, R_{L} =4.7 Ω , R_{GEN} =3 Ω			7.6		ns
t _r	Turn-On Rise Time				5		ns
t _{D(off)}	Turn-Off DelayTime				28.9		ns
t _f	Turn-Off Fall Time				5.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =6.3A, dl/dt=100A/μs			33.2	40	ns
Q _{rr}	Body Diode Reverse Recovery Charge	e I _F =6.3A, dl/dt=100A/μs			43		nC

A: The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A=25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t 🛛 < 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.


C. The R $_{\rm 0JA}$ is the sum of the thermal impedence from junction to lead R $_{\rm 0JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max. E. These tests are performed with the device mounted on 1 in ² FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C. The SOA curve provides a single pulse rating.


APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

AO4611

P-Channel Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =-250μA, V _{GS} =0V		-60			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-48V, V _{GS} =0V				-1	A
			T _J =55°C			-5	μA
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±20V				±100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250 \mu A$		-1.5	-1.9	-3	V
I _{D(ON)}	On state drain current	V _{GS} =-10V, V _{DS} =-5V		-30			А
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-4.9A			34	42	mΩ
			TJ=125°C		58	72	1115.2
		V _{GS} =-4.5V, I _D =-4.4A		42	52	mΩ	
g fs	Forward Transconductance	V _{DS} =-5V, I _D =-4.9A			17.8		S
V _{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V			-0.73	-1	V
I _S	Maximum Body-Diode Continuous Current					-3	А
DYNAMIC	C PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =-30V, f=1MHz			2417	2900	pF
C _{oss}	Output Capacitance				179		pF
C _{rss}	Reverse Transfer Capacitance				120		pF
R _g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			1.9	2.3	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge (10V)	V _{GS} =-10V, V _{DS} =-30V, I _D =-4.9A			45.2	55	nC
Q _g (4.5V)	Total Gate Charge (4.5V)				22.8	28	nC
Q _{gs}	Gate Source Charge				5.8		nC
Q _{gd}	Gate Drain Charge				9.6		nC
t _{D(on)}	Turn-On DelayTime	V _{GS} =-10V, V _{DS} =-30V, R _L =6.2Ω, R _{GEN} =3Ω			9.8		ns
t _r	Turn-On Rise Time				6.1		ns
t _{D(off)}	Turn-Off DelayTime				44		ns
t _f	Turn-Off Fall Time				12.7		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-4.9A, dl/dt=100A/μs			32	42	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-4.9A, dI/dt=100A/μs			42		nC

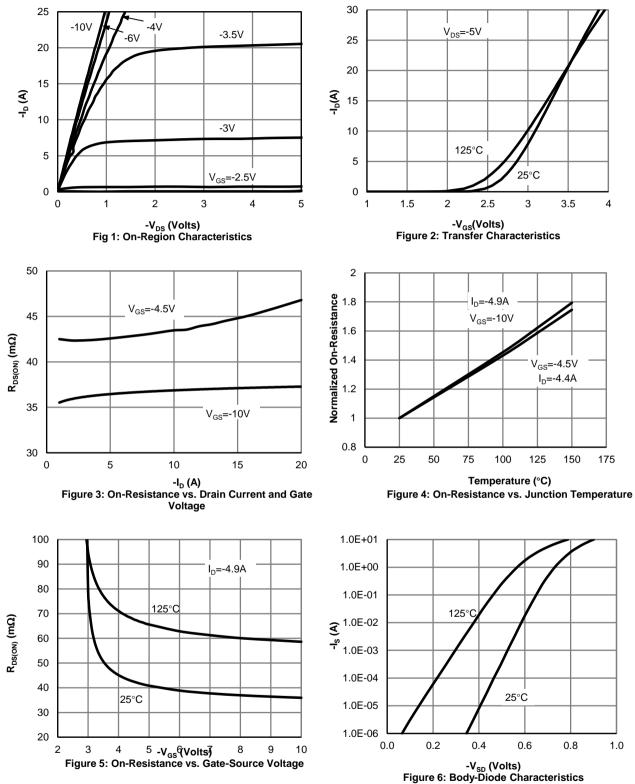
A: The value of R_{θ JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

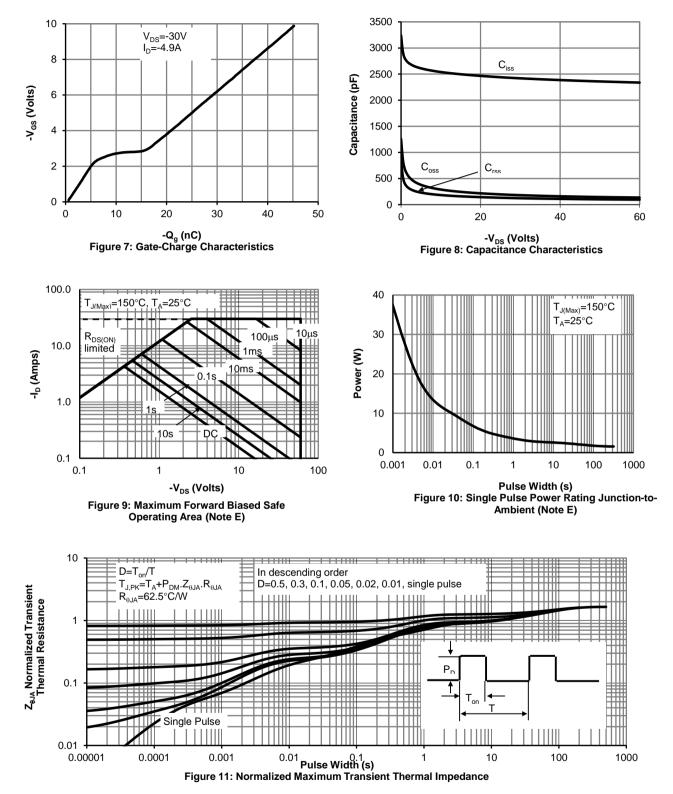
C. The R $_{\rm 0JA}$ is the sum of the thermal impedence from junction to lead R $_{\rm 0JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using <300 µs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C. The SOA curve provides a single pulse rating.


APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale



ALPHA & OMEGA

SEMICONDUCTOR

