

AOD609G

Complementary Enhancement Mode Field Effect Transistor

General Description

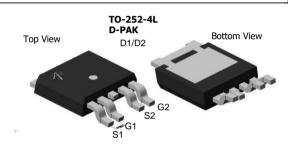
The AOD609G uses advanced trench technology MOSFETs to provide excellent R_{DS(ON)} and low gate charge. The complementary MOSFETs may be used in H-bridge, Inverters and other applications.

-RoHS Compliant -Halogen Free*

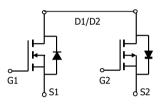
Features

n-channel

 $V_{DS}(V) = 40V, I_{D} = 12A(V_{GS}=10V)$


 $R_{DS(ON)}$ < 30m Ω (V_{GS} =10V)

 $R_{DS(ON)}$ < 40m Ω (V_{GS}=4.5V) **p-channel**


 V_{DS} (V) = -40V, I_{D} = -12A (V_{GS} =-10V) $R_{DS(ON)}$ < 45mΩ (VGS= -10V) $R_{DS(ON)}$ < 66mΩ (VGS= -4.5V) 100% UIS Tested!

100% Rg Tested!

Top View Drain Connected to Tab

n-channel p-channel

Absolute Maximum Ratings	T _A =25°C unless otherwise noted
--------------------------	---

Parameter		Symbol	Max n-channel	Max p-channel	Units	
Drain-Source Voltage		V_{DS}	40	-40	V	
Gate-Source Voltage		V_{GS}	±20	±20	V	
Continuous Drain	T _C =25°C		12	-12		
Current B,G	T _C =100°C	I _D	12	-12	٦ ,	
Pulsed Drain Current B		I _{DM}	30	-30	A	
Avalanche Current ^C		I _{AR}	14	-20	1	
Repetitive avalanche energy L=0.1mH ^C		E _{AR}	9.8	20	mJ	
Danna Diagination	T _C =25°C	В	27	30	W	
Power Dissipation	T _C =100°C	P _D	14	15	7 · v	
Power Dissipation	T _A =25°C	D	2	2	W	
	T _A =70°C	P _{DSM}	1.3	1.3	7 v	
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 175	-55 to 175	°C	

Thermal Characteristics: n-channel and p-channel								
Parameter		Symbol	Device	Тур	Max	Units		
Maximum Junction-to-Ambient A,D	t ≤ 10s	$-$ R _{θJA}	n-ch	17.4	25	°C/W		
Maximum Junction-to-Ambient A,D	Steady-State	IXθJA	n-ch	50	60	°C/W		
Maximum Junction-to-Case Steady-State		$R_{\theta JC}$	n-ch	4	5.5	°C/W		
Maximum Junction-to-Ambient A,D	t ≤ 10s		p-ch	16.7	25	°C/W		
Maximum Junction-to-Ambient A,D	Steady-State	$$ $R_{\theta JA}$	p-ch	50	60	°C/W		
Maximum Junction-to-Case Steady-State		$R_{\theta JC}$	p-ch	3.5	5	°C/W		

N Channel Electrical Characteristics (T_{.j}=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		40			V
I _{DSS} Zero Gate Voltage Drain Current	V_{DS} =40V, V_{GS} =0V				1	μА	
I _{DSS}	Zelo Gate Voltage Diam Guirent		T _J =55°C			5	μΑ
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250 \mu A$		1.7	2.5	3	V
$I_{D(ON)}$	On state drain current	V_{GS} =10V, V_{DS} =5V		30			Α
		V _{GS} =10V, I _D =12A			24	30	
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J =125°C		37	46	mΩ
		V_{GS} =4.5V, I_{D} =8A			31	40	
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =12A			25		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.76	1	V
Is	Maximum Body-Diode Continuous Current				12	Α	
DYNAMIC	PARAMETERS		•		•	•	•
C _{iss}	Input Capacitance				545		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =20V, f=1MHz			65		pF
C _{rss}	Reverse Transfer Capacitance				40		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		1.6	3.2	4.8	Ω
SWITCHI	NG PARAMETERS						
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =20V,			10	13	nC
Q_{gs}	Gate Source Charge	$V_{GS} = 10V, V_{DS} = 20V,$ $V_{DS} = 12A$			2		nC
Q_{gd}	Gate Drain Charge				2.2		nC
t _{D(on)}	Turn-On DelayTime				5.5		ns
t _r	Turn-On Rise Time	V _{GS} =10V, V _{DS} =20V, R _L =	:1.4Ω,		3		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$			19		ns
t _f	Turn-Off Fall Time				4		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =12A, dI/dt=100A/μs			13		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =12A, dI/dt=100A/μs			6.5	_	nC

A. The value of R_{0,1A} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation PDSM is based on R BJA LS 10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design.

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

Rev 2.1: December 2023 www.aosmd.com Page 2 of 9

B. The power dissipation P_D is based on T_{J(MAX)}=175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

C. Single pulse width limited by junction temperature T_{J(MAX)}=175° C.

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.
 F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.
 G. The maximum current rating is package limited.

H. These tests are performed with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with T_A=25° C.

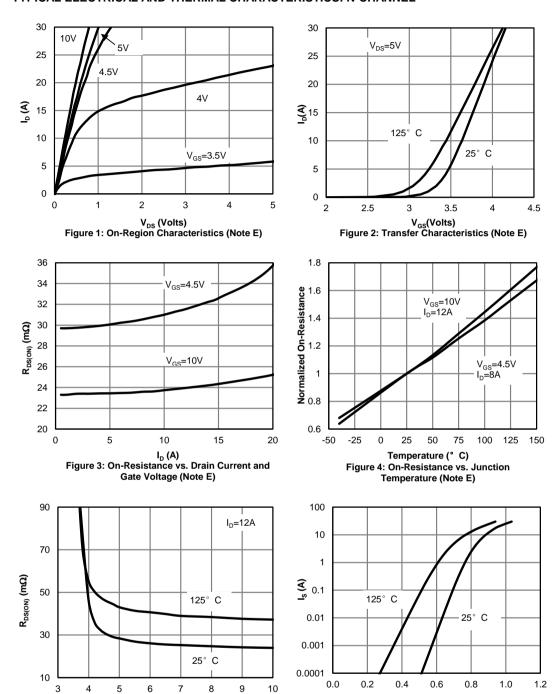
^{*}This device is guaranteed green after data code 8X11 (Sep 1ST 2008).

P-Channel Electrical Characteristics (T_{.j}=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC P	ARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D = -250μA, V _{GS} =0V	-40			V
	Zana Cata Valtana Duain Commant	V _{DS} = -40V, V _{GS} =0V			-1	μА
I _{DSS}	Zero Gate Voltage Drain Current	T _J =55°C			-5	
I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$	-1.7	-2	-3	V
I _{D(ON)}	On state drain current	V _{GS} = -10V, V _{DS} = -5V	-30			Α
		V _{GS} = -10V, I _D = -12A		36	45	
R _{DS(ON)}	Static Drain-Source On-Resistance	_J =125°C		52	65	mΩ
		V_{GS} = -4.5V, I_{D} = -8A		51	66	
g _{FS}	Forward Transconductance	V_{DS} = -5V, I_{D} = -12A		22		S
V_{SD}	Diode Forward Voltage	I _S = -1A,V _{GS} =0V		-0.76	-1	V
Is	Maximum Body-Diode Continuous Curr	rent			-12	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			890		pF
Coss	Output Capacitance	V_{GS} =0V, V_{DS} = -20V, f=1MHz		90		pF
C_{rss}	Reverse Transfer Capacitance			60		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	6.5	13	19.5	Ω
SWITCHI	NG PARAMETERS			-		-
Q _g (-10V)	Total Gate Charge			15.5	21	nC
Q _g (-4.5V)	Total Gate Charge	V_{GS} = -10V, V_{DS} = -20V,		7	9	nC
Q_{gs}	Gate Source Charge	I _D = -12A		3.2		nC
Q_{gd}	Gate Drain Charge			3.5		nC
t _{D(on)}	Turn-On DelayTime			10		ns
t _r	Turn-On Rise Time	V_{GS} = -10V, V_{DS} = -20V, R_L =1.4 Ω ,		15.5		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		35		ns
t _f	Turn-Off Fall Time			50		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F = -12A, dI/dt=100A/μs		20		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F = -12A, dI/dt=100A/μs	_	11	_	nC

A. The value of R_{0JA} is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The Power dissipation P_{DSM} is based on R $_{0JA}$ t≤ 10s and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design.

- B. The power dissipation P_D is based on $T_{J(MAX)}$ =175° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
- C. Single pulse width limited by junction temperature $T_{J(MAX)}$ =175 $^{\circ}$ C.
- D. The $R_{\theta,JA}$ is the sum of the thermal impedance from junction to case $R_{\theta,JC}$ and case to ambient.
- E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
- F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsin k, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.
- G. The maximum current rating is package limited.
- H. These tests are performed with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with $T_A=25^\circ$ C.
- *This device is guaranteed green after data code 8X11 (Sep 1ST 2008).

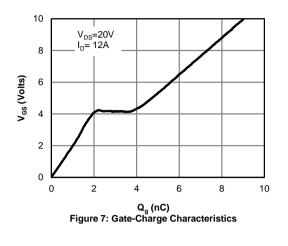

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

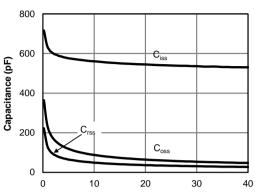
AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

 Rev 2.1: December 2023
 www.aosmd.com
 Page 3 of 9

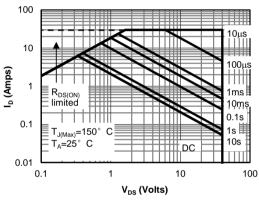
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL

V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage


(Note E)


V_{SD} (Volts)
Figure 6: Body-Diode Characteristics

(Note E)



TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: N-CHANNEL

V_{DS} (Volts)
Figure 8: Capacitance Characteristics

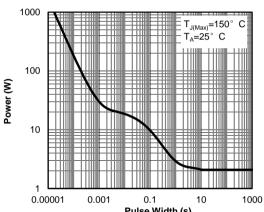
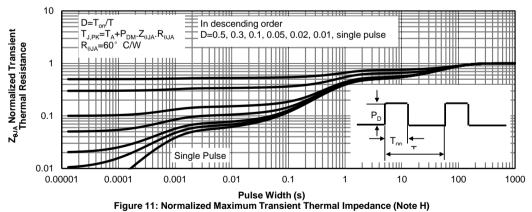
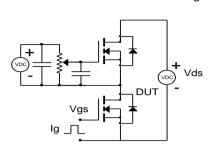
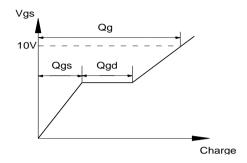
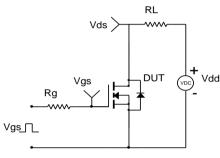



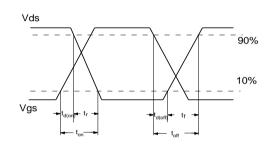
Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

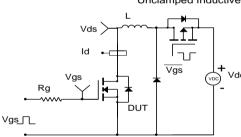
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junctionto-Ambient (Note H)

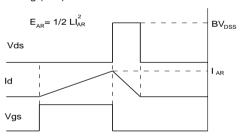


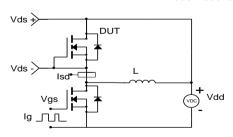

Rev 2.1: December 2023 www.aosmd.com Page 5 of 9

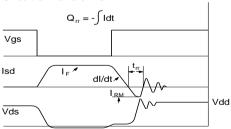

TEST CIRCUTS AND WAVEFORMS: N-CHANNEL

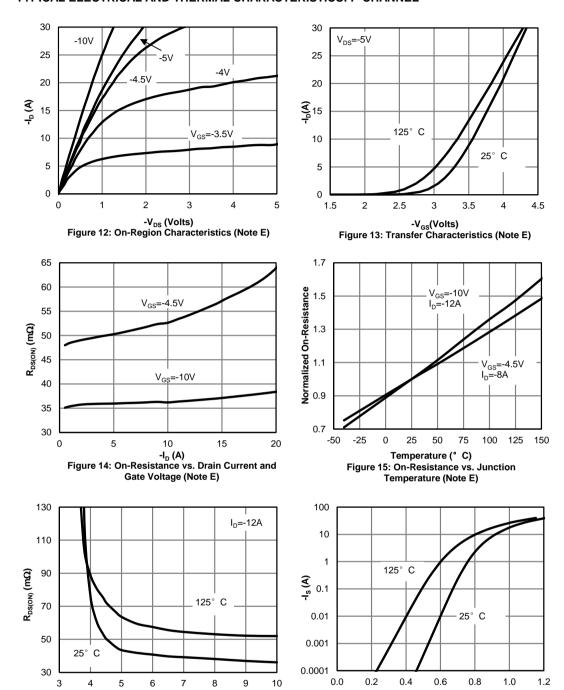

Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms


Diode Recovery Test Circuit & Waveforms

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL

-V_{GS} (Volts) Figure 16: On-Resistance vs. Gate-Source

Voltage (Note E)

-V_{SD} (Volts) Figure 17: Body-Diode Characteristics (Note E)

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: P-CHANNEL

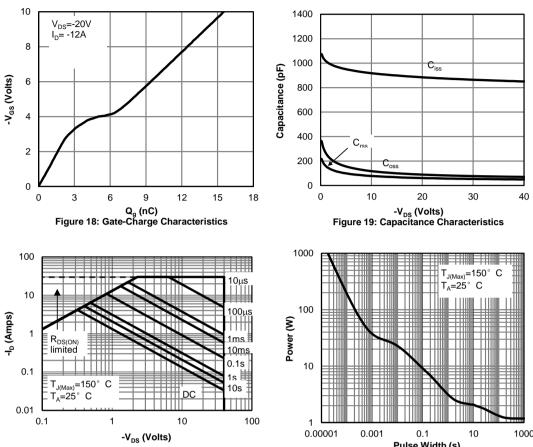
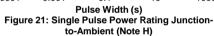
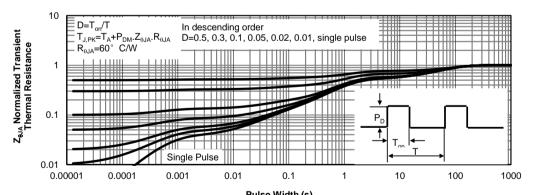
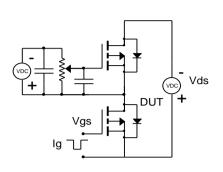
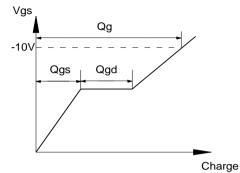
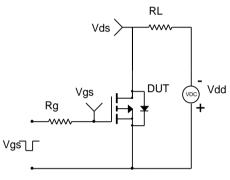
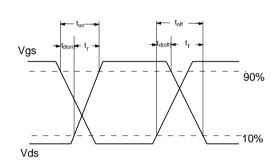




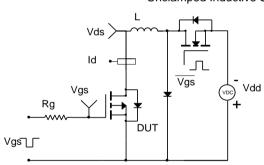
Figure 20: Maximum Forward Biased Safe Operating Area (Note F)

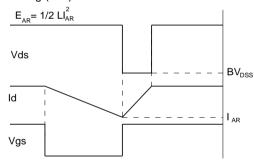



Pulse Width (s)
Figure 22: Normalized Maximum Transient Thermal Impedance (Note H)

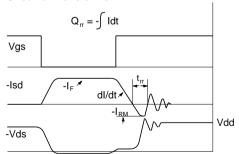

TEST CIRCUTS AND WAVEFORMS: P-CHANNEL


Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

