

AOK150V120X2

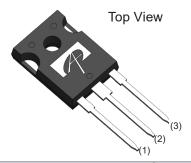
1200 V \alpha SiC Silicon Carbide Power MOSFET

Features

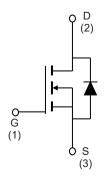
- Proprietary αSiC MOSFET technology
- Low loss, with low R_{DS, ON}
- Fast switching with low R_G and low capacitance
- Optimized gate drive voltage (V_{GS} = 15 V)
- Low reverse recovery diode (Qrr)

Applications

Renewable


Industrial

- EV Charger
- UPS
- Solar Inverters
- SMPS Motor Drives


Product Summary

Pin Configuration

Ordering Part Number	Package Type	Form	Shipping Quantity
AOK150V120X2	TO-247-3L	Tube	30/Tube

Absolute Maximum Ratings

 $(T_A = 25^{\circ}C, unless otherwise noted)$

Symbol		AOK150V120X2	Units		
V _{DS}	Drain-Source Voltage		1200	V	
$V_{GS,MAX}$		Maximum	-8/+18		
V _{GS,OP,TRANS}	Gate-Source Voltage	Max Transient ^(A)	-8/+20	V	
$V_{GS,OP}$		Recommended Operating (B)	-5/+15		
ı	Continuous Drain Current	T _C =25°C	20		
Continuous Drain Ci	Continuous Drain Current	T _C =100°C	14	Α	
I _{DM}	Pulsed Drain Current(C)		40		
E _{AS}	Single Pulsed Avalanche Energy ^(D)		180	mJ	
P _D	Power Dissipation(C)	T _C =25°C	115	W	
T _J , T _{STG}	Junction and Storage Temperature Range Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds		-55 to 175	°C	
T _L			300	°C	

Thermal Characteristics

Symbol	Parameter	AOK150V120X2	Units
R _{0JA}	Maximum Junction-to-Ambient (E,F)	40	°C/W
R _{0JC}	Maximum Junction-to-Case ^(G)	1.3	°C/W

Electrical Characteristics

(T_J = 25°C, unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC PAR	AMETERS						
D\/	Drain Course Brookdown Voltage	I _D =250 μA, V _{GS} =0 V, T _J =25°C		1200			V
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250 μA, V _{GS} =0 V, T _J =150°C			1200		
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =1200 V, V _{GS} =0 V				100	μA
I _{GSS}	Gate-Body Leakage Current	V _{DS} =0 V, V _{GS} =+15/-	5 V			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=3.9\text{mA}$		1.8	2.8	3.6	V
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =15V, I _D =3.9 A	T _J =25°C		150	195	mΩ
DS(ON)	ON) Static Dialit-Source Off-Resistance		T _J =150°C		210		11122
g _{FS}	Forward Transconductance	V _{DS} =20 V, I _D =3.9A			5.7		S
V _{SD}	Diode Forward Voltage	I _S =3.9A, V _{GS} =-5V			4	5	V
DYNAMIC PA	ARAMETERS						
C _{iss}	Input Capacitance				664		pF
Coss	Output Capacitance				42.2		pF
C _{rss}	Reverse Transfer Capacitance	V _{GS} =0V, V _{DS} =800V, f=1MHz			5.2		pF
E _{oss}	C _{oss} Stored Energy				18		μJ
R_{G}	Gate Resistance	f=1 MHz			2.1		Ω
SWITCHING	PARAMETERS						
Q_g	Total Gate Charge	$V_{GS}=-5/+15V,V_{DS}=800V,\\ I_{D}=3.9A$ $V_{GS}=-5V/+15V,V_{DS}=800V,\\ I_{D}=8.5A,R_{G,ON}=2\Omega,R_{G,OFF}=0\Omega$ $L=120\mu\text{H}$ $FWD:AOK150V120X2$			28.3		nC
Q _{gs}	Gate Source Charge				8.5		nC
Q_{gd}	Gate Drain Charge				14.1		nC
t _{D(on)}	Turn-On Delay Time				6.5		ns
t _r	Turn-On Rise Time				15.4		ns
t _{D(off)}	Turn-Off Delay Time				8.7		ns
l _f	Turn-Off Fall Time				9.3		ns
E _{on}	Turn-On Energy				88		μJ
E _{off}	Turn-Off Energy				23		μJ
E _{tot}	Total Switching Energy				111		μJ
t _{rr}	Body Diode Reverse Recovery Time	I _F =8.5A, dI/dt=1000A/us, V _{DS} =800 V			39.5		ns
I _{rm}	Peak Reverse Recovery Current				4		Α
Q _{rr}	Body Diode Reverse Recovery Charge				87.5		nC

Notes:

- A. $t_{pulse} < 1 \mu s$, f > 1 Hz
- B. Device can be operated at Vos=0/15 V. Actual operating VGS will depend on application specifics such as parasitic inductance and dV/dt but should not exceed maximum ratings. C. The power dissipation P_D is based on $T_{J(MAX)}$ = 175°C, using
- junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. D. L=5mH, I_{AS} =8.5A, R_{G} =25 Ω , Starting T_{J} =25 $^{\circ}$ C.
- E. The value of Reja is measured with the device in a still air environment with $T_A = 25$ °C.
- F. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.
- $_{\mbox{\scriptsize G.}}$ The value of $R_{\mbox{\tiny BJC}}$ is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ = 175°C. H. The static characteristics in Figures 1 to 8 are obtained using < 300 µs
- pulses, duty cycle 0.5% max.
- I. These curves are based on Reuc which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)}=175°C. The SOA curve provides a single pulse rating.

Typical Characteristics and Thermal Characteristics

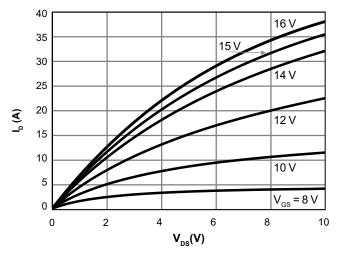


Figure 1. On-Region Characteristics T₁ = 25°C

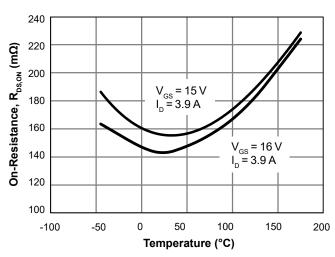


Figure 3. On-Resistance vs. Junction Temperature

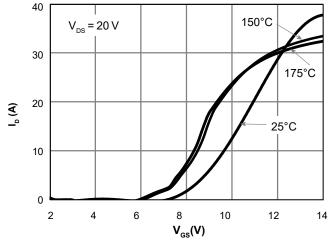


Figure 5. Transfer Characteristics

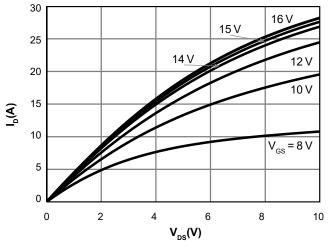


Figure 2. On-Region Characteristics $T_1 = 175^{\circ}C$

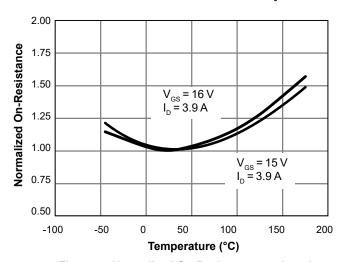


Figure 4. Normalized On-Resistance vs. Junction Temperature

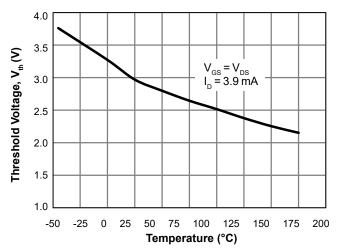


Figure 6. Threshold Voltage vs. Junction Temperature

Rev. 1.0 September 2021 www.aosmd.com Page 3 of 9

Typical Characteristics and Thermal Characteristics (Continued)

(A) so

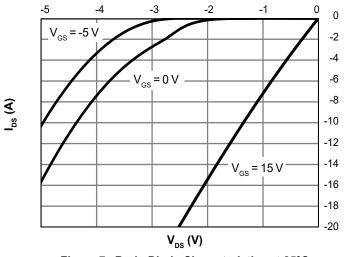


Figure 7. Body-Diode Characteristics at 25°C

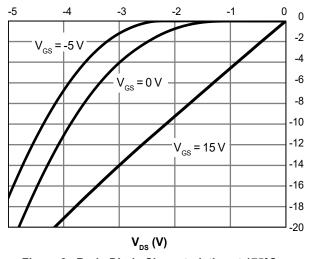


Figure 8. Body-Diode Characteristics at 175°C

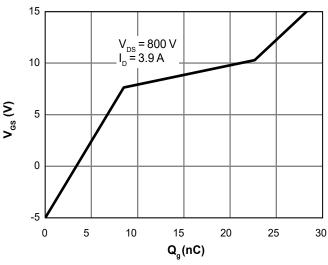


Figure 9. Gate-Charge Characteristics

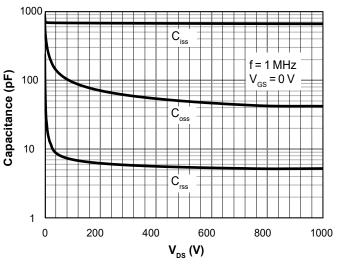


Figure 10. Capacitance Characteristics

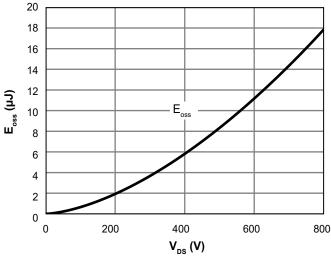


Figure 11. C_{oss} Stored Energy

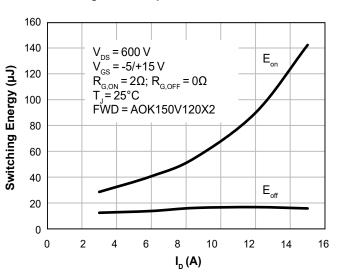


Figure 12. Switching Energy vs. Drain Current

Rev. 1.0 September 2021 www.aosmd.com Page 4 of 9

Typical Characteristics and Thermal Characteristics (Continued)

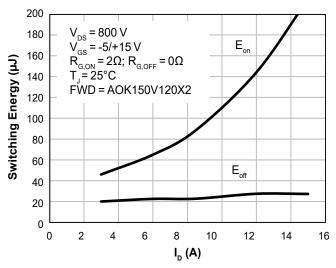


Figure 13. Switching Energy vs. Drain Current

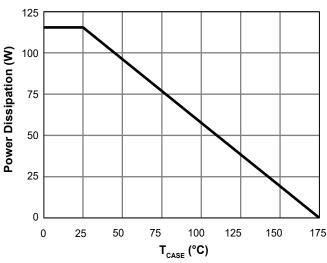


Figure 15. Power De-rating (Note I)

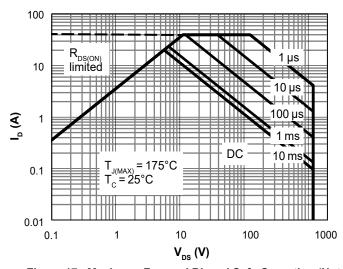


Figure 17. Maximum Forward Biased Safe Operating (Note I)

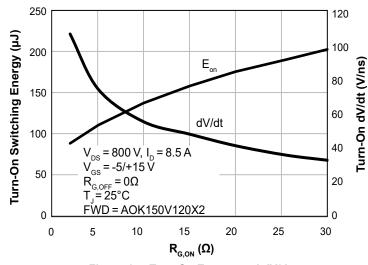


Figure 14. Turn-On Energy and dV/dt vs. External Gate Resistance

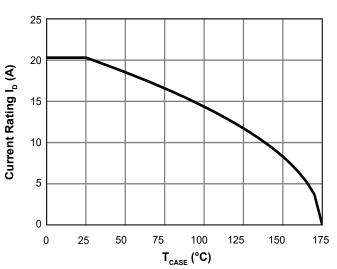


Figure 16. Current De-rating (Note I)

Typical Characteristics and Thermal Characteristics (Continued)

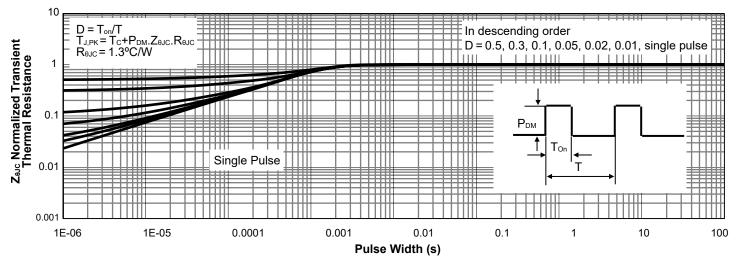


Figure 18. Normalized Maximum Transient Thermal Impedance for AOK150V120X2 (Note I)

Rev. 1.0 September 2021 www.aosmd.com Page 6 of 9

Test Circuits and Waveforms

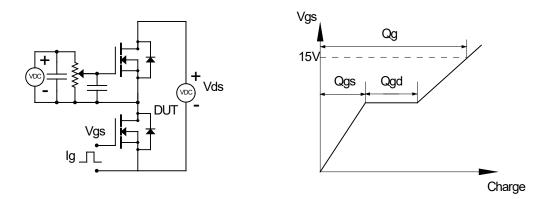


Figure 19. Gate Charge Test Circuits and Waveforms

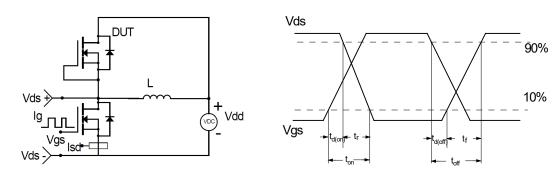


Figure 20. Inductive Switching Test Circuit and Waveforms

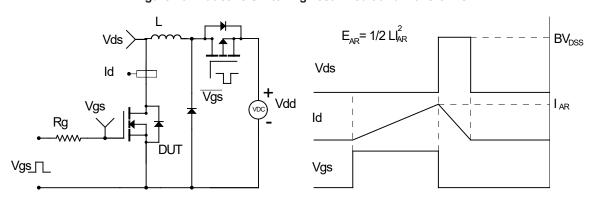


Figure 21. Unclamped Inductive Switching (UIS) Test Circuit and Waveforms

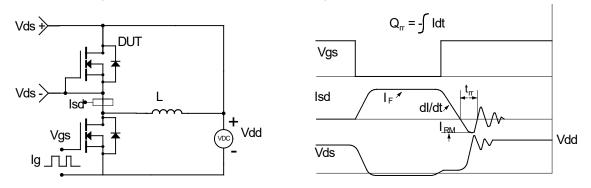
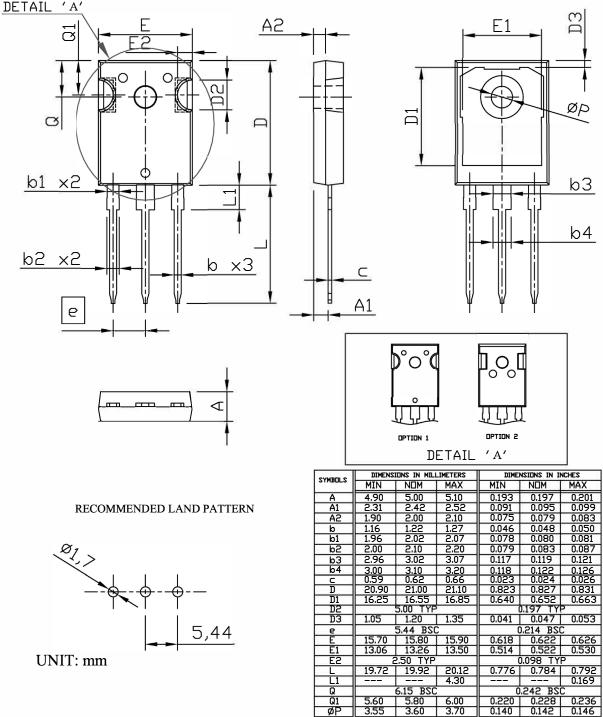
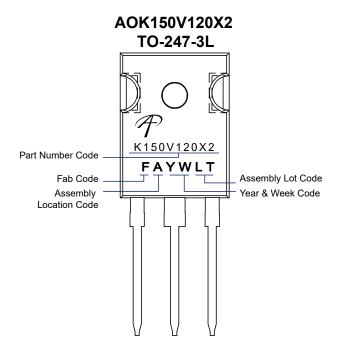



Figure 22. Diode Recovery Test Circuits and Waveforms

Rev. 1.0 September 2021 www.aosmd.com Page 7 of 9

Package Dimensions, TO-247-3L


NOTE

- 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS. MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH.
- 2. CONTROLLING DIMENSION IS MILLIMETER.
 CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

Rev. 1.0 September 2021 **www.aosmd.com** Page 8 of 9

Part Marking

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. AOS does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS's products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Rev. 1.0 September 2021 www.aosmd.com Page 9 of 9