

Features

- Proprietary αSiC Schottky Barrier Diode technology
- Negligible reverse recovery current •
- Maximum operating junction temperature of 175°C •
- Improved switching losses vs. Si bipolar diodes •
- Positive temperature coefficient for ease of paralleling ٠

Applications

Solar Inverters

Renewable EV Charger

•

•

- Industrial • UPS
 - SMPS
 - Motor Drives

Pin Configuration

Product Summary (Per Leg)

V _{DC} @ T _{J.max}	1200 V
I _F	20A
Q _C	122 nC
T _{J,max}	175°C

Ordering Part Number	Package Type	Form	Shipping Quantity
AOK40120XSD	TO-247-3L	Tube	30/Tube

Absolute Maximum Ratings

 $(T_A = 25^{\circ}C, unless otherwise noted)$

Symbol	Parameter		AOK40120XSD	Units	
V _{RRM}	Repetitive Peak Reverse Voltage		1200	V	
V _R	DC Peak Reverse Voltage		1200	V	
I _F	Continuous Forward Current (Per Leg/Device)	T _c =25°C	60/120	А	
		T _c =150°C	20/40		
I _{FSM} at 10 ms	Non-Repetitive Forward Surge Current (Per Leg)		85	А	
Ι _{_{F, MAX} at 10 μs}	Non-Repetitive Peak Forward Surge Current (Per Leg)		535	A	
D		T _c =25°C	250	10/	
P _{TOT} Power Dissipation (~) (Per Leg)	T _c =150°C	41	VV		
∫i²dt	i²t value (Per Leg, T _c =25°C, 10ms)		36	A²s	
T _{J,} T _{STG}	Junction and Storage Temperature Range		-55 to 175	°C	
T	Maximum lead temperature for soldering purpose, 1/8" from case for 5 s		300	°C	

Thermal Characteristics

Symbol	Parameter	AOK40120XSD	Units
R _{ejc}	Maximum Junction-to-Case ^(B) (Per Leg/Device)	0.6/0.3	°C/W

Electrical Characteristics

(Per Leg, T₁=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Мах	Units
STATIC PARAMETERS							
V _{DC}	DC Blocking Voltage	I _D =250μA	T _J =25°C	1200			V
I _R Reve	Bayaraa Current	V _R =1200V	T _J =25°C		10	100	μA
	Reverse Current		T _J =175°C		185		μA
V _F	Diode Forward Voltage	I _F =20A	T _J =25°C		1.45	1.8	V
			T _J =175°C		1.95		V
DYNAMIC PARAMETERS							
С	Total Capacitance	f=1MHz	V _R =1V		1460		pF
			V _R =400 V		103		pF
			V _R =800 V		77		pF
Q _c	Total Capacitance Charge	$V_R = 800 V, Q_C = \int C(V) dV$			122		nC
E _c	Capacitance Stored Energy	V _R =800 V, f=1 MHz			42		μJ

Notes:

A. The power dissipation P_D is based on T_{J(MAX)}=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.

B. The value of $R_{_{\ThetaJC}}$ is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{_{J(MAX)}}$ =175°C. C. These curves are based on $R_{_{\ThetaJC}}$ which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of T_{J(MAX)} =175°C.

Typical Electrical and Thermal Characteristics

Typical Electrical and Thermal Characteristics

Figure 7. Total Capacitance Stored Energy vs. Reverse Voltage

Figure 8. Normalized Maximum Transient Thermal Impedance for AOK40120XSD (Note C)

Package Dimensions, TO-247-3L

NOTE

- 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.
- MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH.
- 2. CONTROLLING DIMENSION IS MILLIMETER.
- CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

Part Marking

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. AOS does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS's products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.