

AON3402

20V N-Channel MOSFET

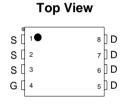
General Description

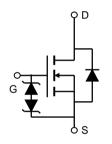
The AON3402 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 1.8V while retaining a 12V $V_{\text{GS(MAX)}}$ rating. This device is suitable for use as load switch and general purpose FET application.

Product Summary

 $V_{DS}(V) = 20V$

 $I_D = 12.6A (V_{GS} = 4.5V)$


 $R_{DS(ON)} < 13m\Omega (V_{GS} = 4.5V)$


 $R_{DS(ON)} < 17 m\Omega (V_{GS} = 2.5V)$ $R_{DS(ON)} < 26 m\Omega (V_{GS} = 1.8V)$

ESD Rating: 2000V HBM 100% Rg Tested

DFN 3x3 **Top View Bottom View**

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V_{DS}	20	V				
Gate-Source Voltage		V_{GS}	±12	V				
Continuous Drain	T _A =25°C		12.6					
Current ^A	T _A =70°C	I_D	10	Α				
Pulsed Drain Current B		I _{DM}	40					
	T _A =25°C	D	3.1	W				
Power Dissipation ^A	T _A =70°C	P_{D}	2] vv				
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	°C				

Thermal Characteristics									
Parameter	Symbol	Тур	Max	Units					
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{ hetaJA}$	30	40	°C/W				
Maximum Junction-to-Ambient A	Steady-State	Г∖өЈА	65	80	°C/W				
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	20	25	°C/W				

Electrical Characteristics (T_J=25°C unless otherwise noted)

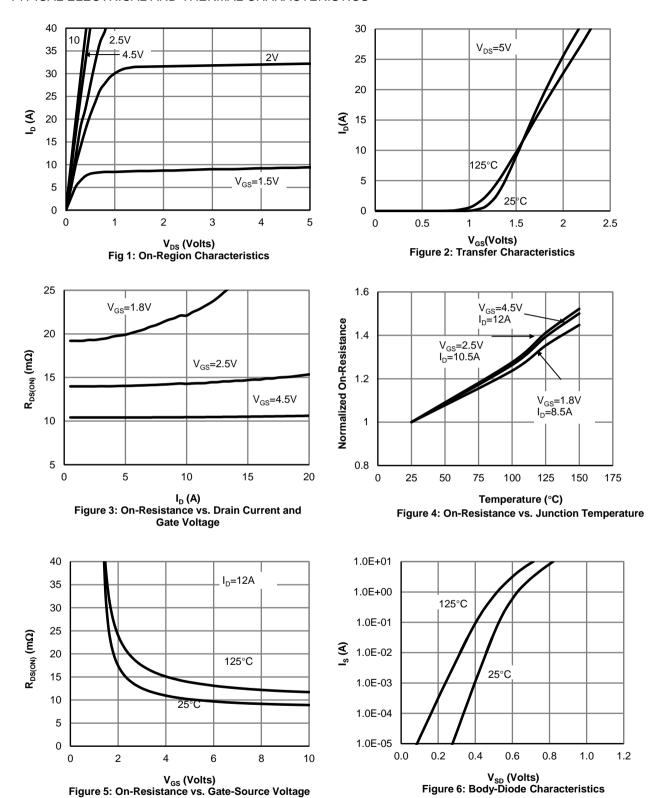
Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D=250\mu A, V_{GS}=0V$	20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =16V, V _{GS} =0V			10	
		T _J =55°	°C		25	μΑ
I _{GSS}	Gate-Body leakage current	$V_{DS}=0V$, $V_{GS}=\pm10V$			10	μΑ
BV_{GSO}	Gate-Source Breakdown Voltage	V_{DS} =0V, I_{G} =±250uA	±12			V
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250 \mu A$		0.78	1	V
I _{D(ON)}	On state drain current	V_{GS} =4.5V, V_{DS} =5V	40			Α
		V _{GS} =4.5V, I _D =12A		10.3	13	C
	Static Drain Course On Besistance	T _J =125	°C	14.4	18	mΩ
	Static Drain-Source On-Resistance	V _{GS} =2.5V, I _D =10.5A		14.3	17	mΩ
		V _{GS} =1.8V, I _D =8.5A		21.7	26	mΩ
g _{FS}	Forward Transconductance	$V_{DS}=5V$, $I_{D}=12A$		37		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.73	1	V
I _S	Maximum Body-Diode Continuous Current				4.8	Α
DYNAMIC	PARAMETERS		•	•		•
C _{iss}	Input Capacitance			1810		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =10V, f=1MHz		232		pF
C _{rss}	Reverse Transfer Capacitance	1		200		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		1.6		Ω
SWITCHI	NG PARAMETERS		•	•		•
Q_g	Total Gate Charge			17.9		nC
Q_{gs}	Gate Source Charge	V_{GS} =4.5V, V_{DS} =10V, I_{D} =12A		1.5		nC
Q_{gd}	Gate Drain Charge	1		4.7		nC
t _{D(on)}	Turn-On DelayTime			2.5		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =10V, R_L =1.0 Ω ,		7.2		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		49		ns
t _f	Turn-Off Fall Time	1		10.8		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =12A, dI/dt=100A/μs		20.2		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =12A, dI/dt=100A/μs		8		nC

A: The value of R $_{0JA}$ is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.

Rev2: Nov. 2010

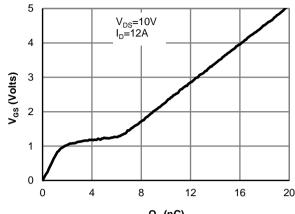
APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

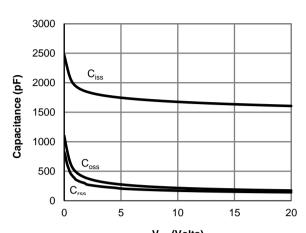

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using 300 μs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25 $^\circ$ C. The SOA curve provides a single pulse rating.



TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

 ${\bf Q_g}$ (nC) Figure 7: Gate-Charge Characteristics

 V_{DS} (Volts) Figure 8: Capacitance Characteristics

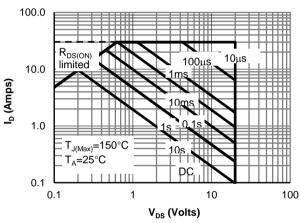
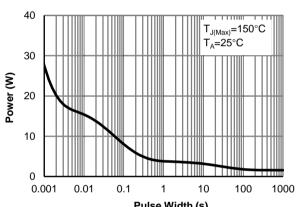



Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toAmbient (Note E)

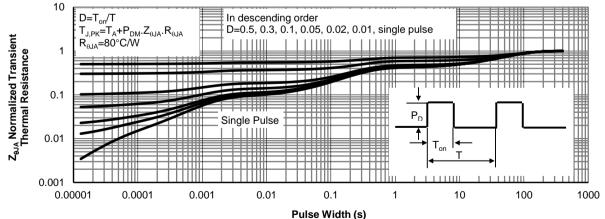


Figure 11: Normalized Maximum Transient Thermal Impedance