

AON4420L

30V N-Channel MOSFET

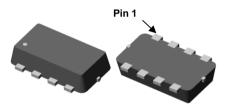
General Description

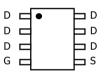
The AON4420L combines advanced trench MOSFET technology with a small footprint package to provide low $R_{\rm DS(ON)}$ per unit area. This device is ideal for load switch and high speed switching applications.

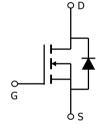
- RoHS Compliant
- Halogen Free

Features

 $V_{DS}(V) = 30V$


 $I_{D} = 10A$ $(V_{GS} = 10V)$


 $R_{DS(ON)} < 19m\Omega$ $(V_{GS} = 10V)$


 $R_{DS(ON)}$ < 25m Ω (V_{GS} = 4.5V)

Absolute Maximum Ratings	T _A =25°C unless otherwise noted
Davameter	Cumpleal

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V_{DS}	30	V	
Gate-Source Voltage		V_{GS}	±20	V	
Pulsed Drain Current ^C		I _{DM}	50		
Continuous Drain	T _A =25°C		10	۸	
Current ^A	T _A =70°C	I _D	8	А	
	T _A =25°C	D	1.6	W	
Power Dissipation ^A	T _A =70°C	$-P_{D}$	1		
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	°C	

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	D	34	40	°C/W	
Maximum Junction-to-Ambient A	Steady-State	$R_{\theta JA}$	66	80	°C/W	
Maximum Junction-to-Lead ^B	Steady-State	$R_{ heta JL}$	20	25	°C/W	

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
STATIC PARAMETERS							
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V	
I _{DSS} Zero Gate Voltage Drain Current	$V_{DS} = 30V, V_{GS} = 0V$			1	μА		
·D22	Zoro Cato Voltago Brain Garroni	T _J = 55°C			5	μΛ	
I_{GSS}	Gate-Body leakage current	$V_{DS} = 0V, V_{GS} = \pm 20V$			±100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS} I_D = 250 \mu A$	1.4	1.9	2.5	V	
$I_{D(ON)}$	On state drain current	$V_{GS} = 10V, V_{DS} = 5V$	50			Α	
		$V_{GS} = 10V, I_D = 10A$		16	20		
$R_{DS(ON)}$		T _J =125°C		27		mΩ	
		$V_{GS} = 4.5V, I_D = 8A$	$I_{GS} = 4.5 \text{V}, I_D = 8 \text{A}$ 21				
g _{FS}	Forward Transconductance	$V_{DS} = 5V, I_{D} = 10A$		30		S	
V_{SD}	Diode Forward Voltage	$I_S = 1A, V_{GS} = 0V$		0.75	1	V	
Is	Maximum Body-Diode Continuous Current				3	Α	
DYNAMIC	PARAMETERS			-			
C _{iss}	Input Capacitance		440	550	660	pF	
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz	80	110	140	pF	
C _{rss}	Reverse Transfer Capacitance		35	55	80	pF	
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz	2	4	6	Ω	
SWITCHIN	NG PARAMETERS						
Q _g (10V)	Total Gate Charge (10V)		8	9.8	12	nC	
Q _g (4.5V)	Total Gate Charge (4.5V)	V _{GS} =10V, V _{DS} =15V, I _D =10A	4	4.6	5.5	nC	
Q_{gs}	Gate Source Charge		1.5	1.8	2.2	nC	
Q_{gd}	Gate Drain Charge	1	1.3	2.2	3	nC	
t _{D(on)}	Turn-On DelayTime			5		ns	
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_{L} =1.5 Ω ,		3.2		ns	
$t_{D(off)}$	Turn-Off DelayTime	$R_{GEN}=3\Omega$		24		ns	
t _f	Turn-Off Fall Time]		6		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =10A, dI/dt=300A/μs	8	11	14	ns	
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =10A, dI/dt=300A/μs	11	13	16	nC	

A: The value of R $_{\rm BJA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with $T_{\rm A}$ = 25°C. The value in any given application depends on the user's specific board design.

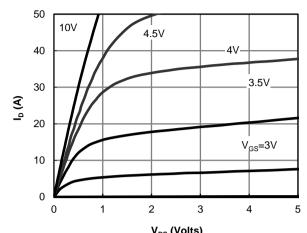
Rev0: July 2008

APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO MAKE CHANGES TO PRODUCT SPECIFICATIONS WITHOUT NOTICE. IT IS THE RESPONSIBILITY OF THE CUSTOMER TO EVALUATE SUITABILITY OF THE PRODUCT FOR THEIR INTENDED APPLICATION. CUSTOMER SHALL COMPLY WITH APPLICABLE LEGAL REQUIREMENTS, INCLUDING ALL APPLICABLE EXPORT CONTROL RULES, REGULATIONS AND LIMITATIONS.

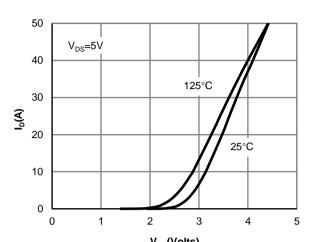
AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

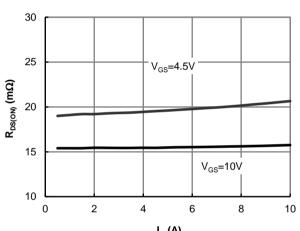
B: Repetitive rating, pulse width limited by junction temperature.

C. The R BLA is the sum of the thermal impedence from junction to lead R BLI and lead to ambient.


D. The static characteristics in Figures 1 to 6 are obtained using t \leqslant 300 μs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The SOA curve provides a single pulse rating.


F. The current rating is based on the $t \le 10s$ thermal resistance rating.


TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

 V_{DS} (Volts) Figure 1: On-Region Characteristics

V_{GS}(Volts)
Figure 2: Transfer Characteristics

 $\rm I_D$ (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage

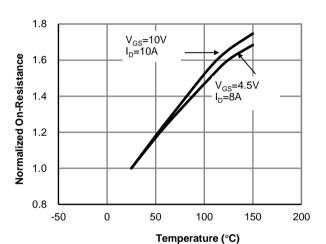
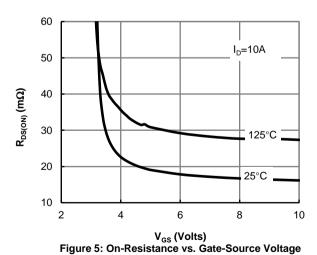
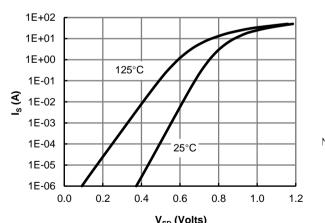
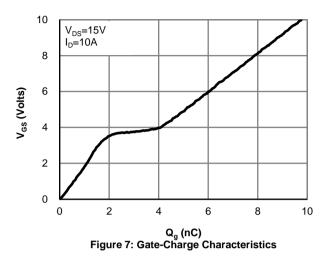
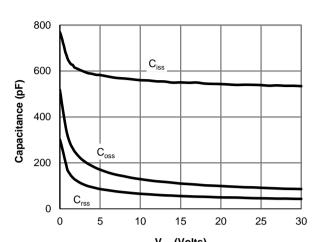




Figure 4: On-Resistance vs. Junction Temperature





V_{SD} (Volts) Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

 V_{DS} (Volts) Figure 8: Capacitance Characteristics

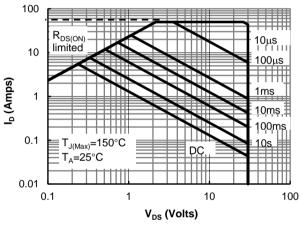
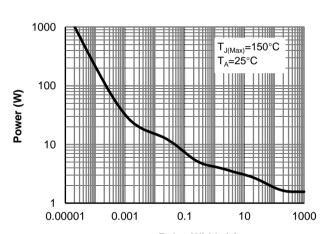
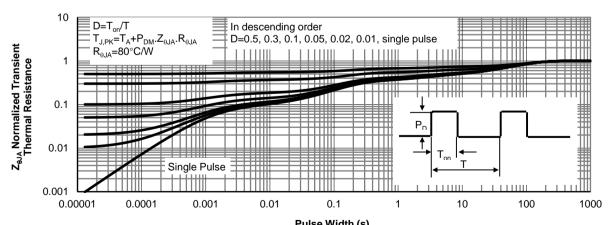
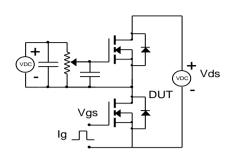
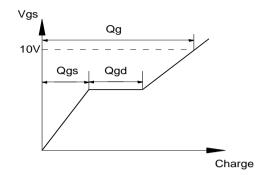




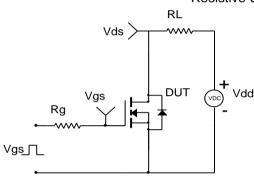
Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

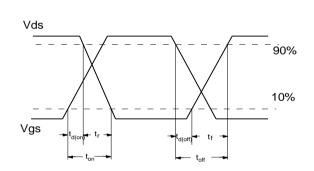
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junctionto-Ambient (Note E)

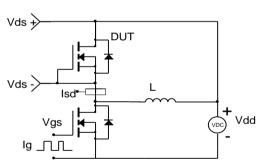

١

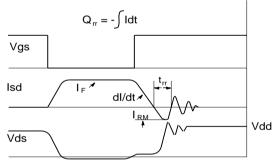


Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance(Note E)




Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

