

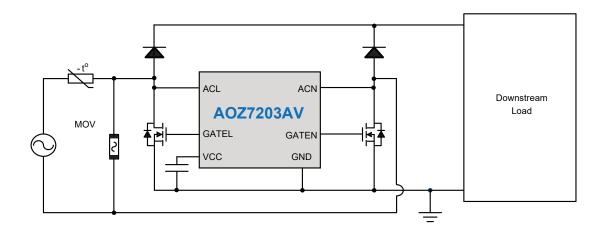
General Description

The AOZ7203AV is a Zero Bridge Loss AlphaZBLTM Controller that controls the two external N-channel MOSFETs to replace two low-side diodes when used in AC/DC diode-bridge application. The AOZ7203AV can help the power supply to reduce power consumption and heat dissipation, and can make it easier to reach the titanium level efficiency and shorten engineering development time.

In diode-bridge application, the AOZ7203AV senses the AC input voltage and reduces the forward conduction loss to the minimum value. The AOZ7203AV is self-powered from the AC line without the need of an extra voltage supply.

The AOZ7203AV is available in a SO8 package.

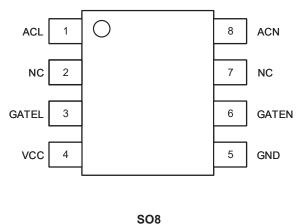
Features


- · Replaces two low side diodes in the bridge rectifier
- Increases efficiency and reduces power consumption
- Self-powered in AC system
- Integrated X-capacitor discharge
- Low IC power consumption
- 1x2 drivers compact design
- Very low external part counts
- Avoid gate signal of two low side MOSFET overlapped

Applications

- High-end adaptors
- Desktops
- Game consoles
- Servers
- Telecom power supplies

Typical Application


Ordering Information

Part Number	Ambient Temperature Range	Package	Environmental	
AOZ7203AV	-40°C to +125°C	SO8	Green Product	

AOS products are offered in packages with Pb-free plating and compliant to RoHS standards. Please visit https://aosmd.com/sites/default/files/media/AOSGreenPolicy.pdf for additional information.

Pin Configuration

(Top View)

Pin Description

Pin Number	Pin Name	Pin Function			
1	ACL	AC Input L; don't apply a DC voltage between the ACL and ACN pins.			
2	NC	No Connection.			
3	GATEL	Gate Driver for Low Side.			
4	VCC	Power Source for Controller.			
5	GND	Ground.			
6	GATEN	Gate Driver for Low Side N.			
7	NC	No Connection.			
8	ACN	AC Input N; don't apply a DC voltage between the ACL and ACN pins.			

Absolute Maximum Ratings

Exceeding the Absolute Maximum ratings may damage the device.

Parameter	Rating
VCC to GND	-0.3V to +24V
ACL, ACN to GND, Peak Transient Voltage ⁽¹⁾	-1V to 700V
ACL, ACN to GND, Negative Transient ⁽¹⁾	-5V
GATEL, GATEN to GND	-0.3V to (VCC + 0.3V)
Storage Temperature (T _S)	-40°C to +150°C
ESD Rating, human body model ⁽²⁾ – ACL, ACN	1kV
ESD Rating, human body model – GATEL, GATEN, VCC	2kV
ESD Rating, charge device model	1kV

Recommended Operating Conditions

The device is not guaranteed to operate beyond the Maximum Recommended Operating Conditions.

Parameter	Rating
ACL, ACN to GND, DC	440V
Junction Temperature (T _J)	-40°C to +125°C
Package Thermal Resistance SO8 (Θ _{JA})	115°C/W

Min

440

15.5

11

2

2

80

15

125

300

15

4

Тур

16.5

12.5

2.8

1

3

120

35

5

0.75

4

0.1

45

200

380

20

7

Max

17.5

14

2

160

45

5

0.2

65

295

430

25

10

Units

V

V

V

mΑ

μΑ

mΑ

ms

μA

V

V

us

μs

μs

mΑ

mΑ

Ω

Ω

Notes:

Symbol

V_{RRM}

V_{CC_UP}

I Charge

I_{off}

l_{x-dis}

I_{OP}

T_{d on}

T_{d_off}

T_{pp}

 $\mathsf{T}_{\mathsf{x} ext{-delay}}$

VACL/N ON

VACL/N_OFF

IGATEL/N_source

R_{GATEL/N} source

R_{GATEL/N sink}

IGATEL/N_sink

V_{CC UVLO}

1. Peak voltages can be applied for 10 minutes over a lifetime.

V_{CC} UVLO Rising

V_{CC} UVLO Falling

ACL, ACN Charging for Vcc

ACL, ACN Non-charging

X-discharge Delay Time

Switch Turn-on Threshold

Switch Turn-off Threshold

Turn-on Delay Time

Turn-off Delay Time

Gate Pull-high Current

Gate Pull-low Current

Gate Pull-high Resistance

Gate Pull-low Resistance

Vcc Operation Current at On-state

ACL, ACN Propagation Delay Time

X-discharge Current

- 2. Devices are inherently ESD sensitive, handling precaution are
- required. Human body model rating: $1.5 k\Omega$ in series with 100 pF.

Electrical Characteristics

 $T_A = 25 \degree C$, VCC = 17V, VGND=0V, unless otherwise specified.

Parameter

Repetitive Peak Reverse Voltage

Conditions

 $I_{ACL/N} = 250 \mu A$

 $V_{ACL/N} - V_{CC} = 13V$

 $V_{ACL/N} - V_{CC} = 13V$

V_{ACL/N}=0V, V_{ACL/N}=7V

 $V_{ACN/L}$ =0V, $V_{ACL/N}$ rising

V_{ACN/L} =0V, V_{ACL/N} falling

V_{ACN/L} =0V, V_{ACL/N} rising

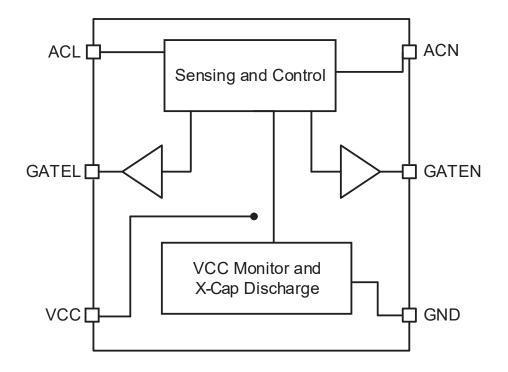
V_{ACN/L} =0V, V_{ACL/N} falling

V_{cc}=16V V_{GATEL/N} =10V

V_{cc}=16V V_{GATEL/N} =6V

GATEL, GATEN swap states

 $V_{ACL/N} = 600V$


V_{ACL/N} rising

V_{CC} rising

V_{CC} falling

Functional Block Diagram

Detailed Description

The AOZ7203AV with a low-voltage capacitor can drive the two external N-MOSFETs to replace two low-side diodes in the traditional bridge rectifier application.

In normal operation, after Vcc is charged to UVLO rising level VCC_UP, AOZ7203AV senses the voltages of input pins ACL and ACN to determine when to turn high one of the gates GATEL and GATEN. When the ACL voltage approaches zero and the ACN voltage rises above the switch turn-on threshold VACL/N_ON (5V typical), the GATEL is turned high and the N-MOSFET driven by GATEL is on. When this half AC cycle comes near the end, the ACN voltage falls below the switch turn-off threshold VACL/N_OFF (0.75V typical) and the GATEL is turned low. Thus the conduction loss in this half AC cycle is reduced. On the next half AC cycle, the N-MOSFET driven by GATEN is controlled in the similar way to reduce the conduction loss.

consumption during charging is thus minimized to about 1 mW to 2 mW for AC input with typical line frequency, and the VCC voltage is thus kept above the UVLO falling level V_{CC_UVLO} if VCC capacitor is large enough. The value of VCC capacitor is recommended not smaller than 1 μ F/25V for typical application.

When the AC input voltage is removed, after about the X-discharge delay time Tx-delay, the AOZ7203AV enters X-cap discharge mode. The X-discharge current Ix-dis is pulled via the ACL or ACN pin to discharge the X capacitors. The GATEL and GATEN are kept low in this mode. If the AC input voltage comes back, the AOZ7203AV detects the voltage change on the ACL and ACN pin and leaves the X-cap discharge mode. The VCC voltage is then recharged and the AOZ7203 operates normally again.

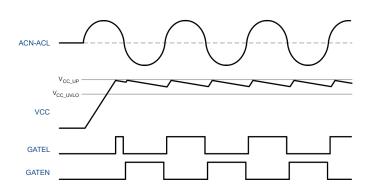
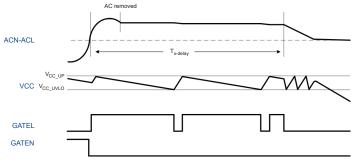
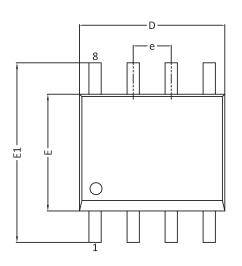
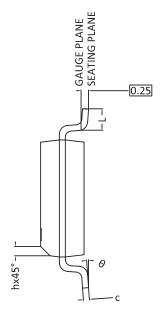
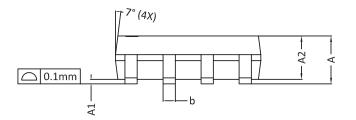



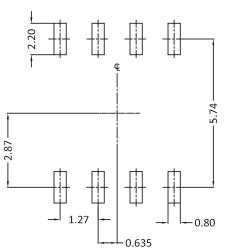
Figure 1. Startup and Normal Operation

When the AC input voltage is connected, the VCC capacitor is first charged to UVLO rising level V_{CC_UP} via the ACL or ACN pin. During normal operation, VCC capacitor is also charged when the voltage of ACL or ACN rises from zero to the level a little bit above the VCC voltage. The power





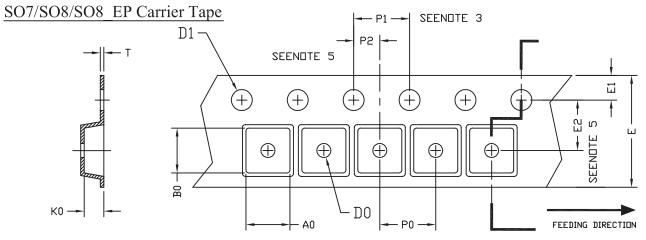

Note that AOZ7203AV does not support DC input applications. When the input voltage between ACL and ACN is a DC, after about the X-discharge delay time $T_{x-delay}$, the AOZ7203AV also enters X-cap discharge mode. Then AOZ7203AV keeps pulling the current I_{x-dis} via the ACL or ACN pin and driving GATEL and GATEN low. So there is no benefit of power loss reduction.


Package Dimensions, SO8

RECOMMENDED LAND PATTERN

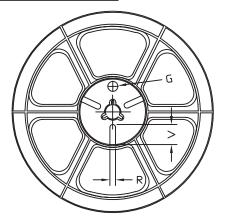
SYMBOLS	DIN	IENSION IN	MM	DIME	NSION IN IN	CHES
STIVIBULS	MIN	NOM	MAX	MIN	NOM	MAX
A	1.35	1.65	1.75	0.053	0.065	0.069
A1	0.10	0.15	0.25	0.004	0.006	0.010
A2	1.25	1.50	1.65	0.049	0.059	0.065
b	0.31	0.41	0.51	0.012	0.016	0.020
с	0.17	0.20	0.25	0.007	0.008	0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
E	3.80	3.90	4.00	0.150	0.154	0.157
E1	5.80	6.00	6.20	0.228	0.236	0.244
e		1.27 BSC			0.050 BSC	
h	0.25	0.30	0.50	0.010	0.012	0.020
L	0.40	0.69	1.27	0.016	0.027	0.050
θ	0°	4°	8°	0°	4°	8°

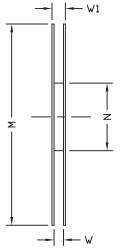
UNIT: mm

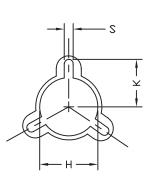

NOTE

- 1. ALL DIMENSIONS ARE IN MILLMETERS.
- 2. DIMENSIONS ARE INCLUSIVE OF PLATING.
- 3. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.
- MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH. 4. DIMENSION L IS MEASURED IN GAUGE PLANE.
- 5. CONTROLLING DIMENSION IS MILLIMETER.

CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

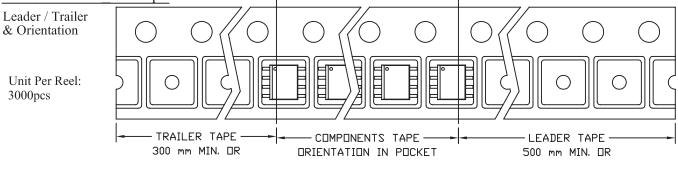

Tape and Reel Dimensions, SO8



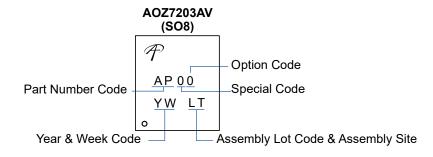

UNIT: MM

PACKAGE	A0	BO	К0	DO	D1	E	E1	E2	P0	P1	P2	Т
SO7/SO-8	6.40	5.20	2.10	1.60	1.50	12.00	1.75	5.50	8.00	4.00	2.00	0.25
(12 mm)	±0.10	±0.10	±0.10	±0.10	+0.10	±0.30	±0.10	±0.05	±0.10	±0.10	±0.05	±0.05

SO7/SO8/SO8 EP Reel



UNIT: MM


TAPE SIZE	REEL SIZE	М	N	W	W1	Н	К	S	G	R	V
12 mm	ø330	Ø330.00 ±0.50	ø97.00 ±0.10	13.00 ±0.30	17.40 ±1.00	¢13.00 +0.50 -0.20	10.60	2.00 ±0.50			

SO7/SO8/SO8 EP Tape

Part Marking

Part Number	Description	Code
AOZ7203AV	Green Product	AP00

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. Alpha and Omega Semiconductor does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS's products are provided subject to AOS's terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.