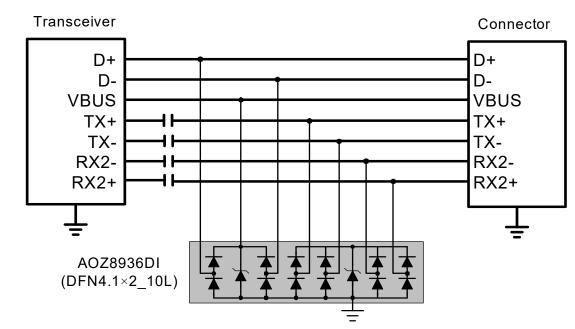


General Description

The AOZ8936DI is a multi-channel combo transient voltage suppressor array designed to protect high speed data lines such as USB3.1, USB2.0,and VBUS from damaging ESD events.

This device incorporates 2 channels for USB2.0, 4 channels for USB3.1 and 1 channel for VBUS.

The AOZ8936DI comes in a RoHS compliant and Halogen Free DFN4.1x2.0 package and is rated for -40°C to +125°C junction temperature range.


Features

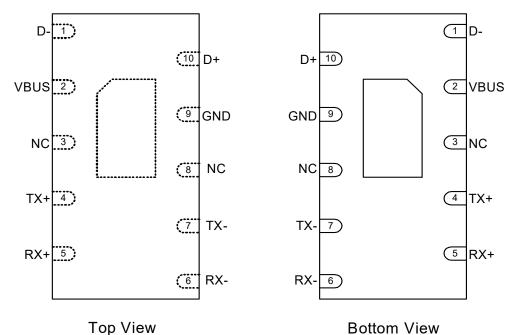
- IEC61000-4-2, ESD immunity (Contact/Air):
 - ± 30/30 kV (USB 3.1)
 - ± 24/30 kV (USB 2.0)
 - ± 30/30 kV (VBUS)
- IEC61000-4-5, Surge Immunity (8/20μs):
 - ± 6 A (USB 3.1)
 - ± 4 A (USB 2.0)
 - ± 15 A (VBUS)
- Capacitance between I/O to GND:
 - 0.4pF (USB 3.1)
 - 1.75pF (USB 2.0)
 - 120pF (VBUS)

Applications

- USB 3.1/3.2 & USB 2.0
- Monitors and flat panel displays
- Set-top-box
- Notebook computers

Typical Application

Ordering Information


Part Number	Ambient Temperature Range	Package	Environmental			
AOZ8936DI	-40°C to +125°C	DFN4.1X2_10L	Green Product			

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant.

Please visit www.aosmd.com/media/AOSGreenPolicy.pdf for additional information.

Pin Configuration

Absolute Maximum Ratings

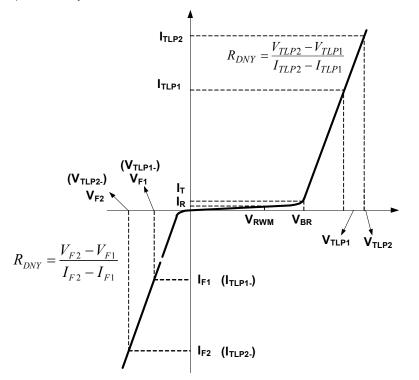
Exceeding the Absolute Maximum ratings may damage the device.

Parameter	Rating						
	Pin 1 & Pin 10 (USB 2.0)	Pin 4 to Pin 7 (USB 3.1/3.2)	Pin 2 (VBUS)				
Storage Temperature (T _S)	-65°C to +150°C	-65°C to +150°C	-65 °C to +150°C				
ESD Rating per IEC61000-4-2, contact ⁽¹⁾	±24 kV	±30 kV	±30 kV				
ESD Rating per IEC61000-4-2, air ⁽¹⁾	±30 kV	±30 kV	±30 kV				
8/20µs Surge IEC61000-4-5	±4 A	±6 A	±15 kV				

Notes:

1. IEC 61000-4-2 discharge with C_{Discharge} = 150pF, R_Discharge = 330 Ω .

2. Human Body Discharge per MIL-STD-883, Method 3015 C_{Discharge} = 100pF, R_{Discharge} = $1.5k\Omega$.


Maximum Operating Ratings

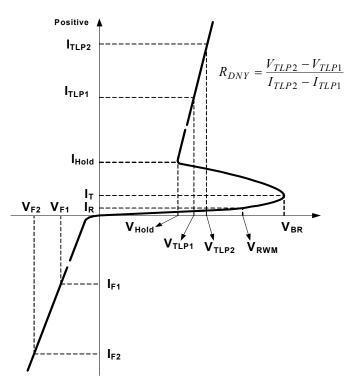
Parameter	Rating
Junction Temperature (T _J)	-40°C to +125°C

Electrical Characteristics

 $T_A = 25^{\circ}C$ unless otherwise specified. Any I/O Pin to GND.

	Pin1 & Pin 10 (D+, D- of USB 2.0)										
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units					
V _{RWM}	Reverse Working Voltage				5.5	V					
V _{BR}	Reverse Breakdown Voltage	Ι _T = 100μΑ	6.6			V					
I _R	Reverse Leakage Current	V _T = Max, V _{RWM}			1	μA					
V _F	Forward Voltage		0.7	0.85	0.95	V					
V _{CL}	Clamping Voltage ⁽³⁾⁽⁴⁾ (100ns Transmission Line Pulse)	I _{TLP} = 1A I _{TLP} = -1A		11 -1.5		V					
		I _{TLP} = 16A I _{TLP} = -16A		18 -7.5							
R _{DNY}	Dynamic Resistance ⁽³⁾⁽⁴⁾	I _{TLP} = 1A to 16A I _{TLP} = -1A to -16A			0.45 0.40	Ω					
I _{PP}	Peak Pulse Current ⁽³⁾ IEC61000-4-5 Surge 8/20μs	Any I/O Pin to GND GND to any I/O Pin			±4	А					
M	Clamping Voltage ⁽³⁾	$I_{PP} = 1A$ $I_{PP} = -1A$		10 -2		V					
V _{CL}	IEC61000-4-5 Surge 8/20µs	I _{PP} = 4A I _{PP} = -4A		12.5 -4.5							
Cj	Junction Capacitance ⁽³⁾	V _{BUS} =3.3V, f = 1MHz, Any I/O Pin to GND		1.75	2	pF					

Notes:


3. These specifications are guaranteed by design and characterization.

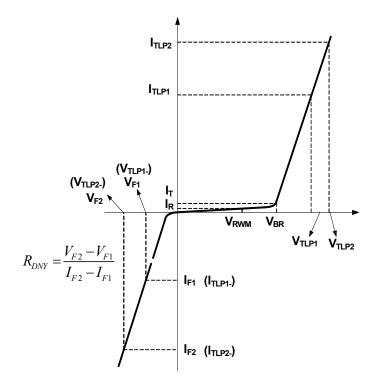
4. Measurements performed using a 100ns Transmission Line Pulse (TLP) system.

Electrical Characteristics

 $T_A = 25^{\circ}C$ unless otherwise specified. Any I/O Pin to GND.

	Pin 4 to Pin 7 (TX+, TX-, RX+, RX- of USB 3.1/3.2)									
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units				
V _{RWM}	Reverse Working Voltage				5.5	V				
V _{BR}	Reverse Breakdown Voltage	Ι _T = 100μΑ	6.6			v				
I _R	Reverse Leakage Current	V _T = Max, V _{RWM}			100	nA				
V _F	Forward Voltage		0.7	0.85	0.95	V				
V _{CL}	Clamping Voltage ⁽³⁾⁽⁴⁾	I _{TLP} = 1A I _{TLP} = -1A		1.5 -1.5		V				
•CL	(100ns Transmission Line Pulse)	I _{TLP} = 16A I _{TLP} = -16A		6 -4						
R _{DNY}	Dynamic Resistance ⁽³⁾⁽⁴⁾	I _{TLP} =1 to 16A I _{TLP} =-1 to -16A			0.30 0.20	Ω				
I _{PP}	Peak Pulse Current ⁽³⁾ IEC61000-4-5 Surge 8/20μs	Any I/O Pin to GND GND to any I/O Pin			±6	А				
Va	Clamping Voltage ⁽³⁾	I _{PP} =1A I _{PP} =-1A		2 -2		V				
V _{CL}	IEC61000-4-5 Surge 8/20μs	I _{PP} =6A I _{PP} =-6A		6 -5		v				
CJ	Junction Capacitance	V _{I/O} = 1.65V, f = 1MHz, Any I/O Pin to GND		0.4	0.6	pF				

Notes:

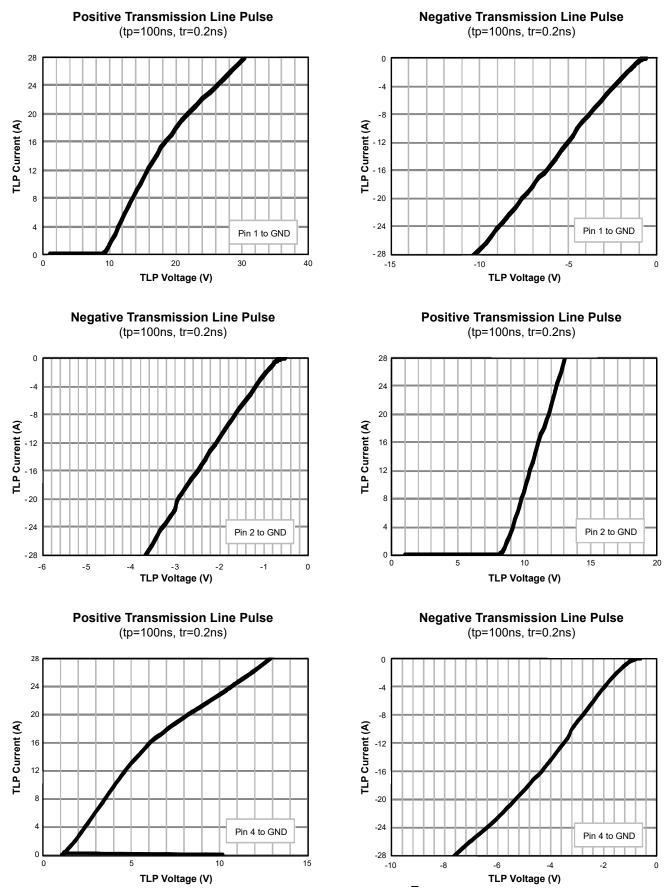

3. These specifications are guaranteed by design and characterization.

4. Measurements performed using a 100ns Transmission Line Pulse (TLP) system.

Electrical Characteristics

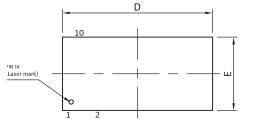
 $T_A = 25^{\circ}$ C unless otherwise specified. Pin 2 to GND.

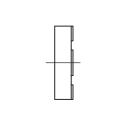
		Pin 2 (VBUS)				
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{RWM}	Reverse Working Voltage				5.5	V
V _{BR}	Reverse Breakdown Voltage	I _T = 1mA	6.6			v
I _R	Reverse Leakage Current	V _T = Max, V _{RWM}			1	μA
V _F	Forward Voltage		0.7	0.85	0.95	V
V _{CL}	Clamping Voltage ⁽³⁾⁽⁴⁾	$I_{TLP} = 1A$ $I_{TLP} = -1A$		9 -1		V
-	(100ns Transmission Line Pulse)	I _{TLP} = 16A I _{TLP} = -16A		12 -3		
R _{DNY}	Dynamic Resistance ⁽³⁾⁽⁴⁾	I _{TLP} =1 to 16A I _{TLP} =-1 to -16A			0.20 0.13	Ω
I _{PP}	Peak Pulse Current ⁽³⁾ IEC61000-4-5 Surge 8/20µs	Any I/O Pin to GND GND to any I/O Pin			±15	A
M	Clamping Voltage ⁽³⁾	I _{PP} =1A I _{PP} =-1A		9 -1.3		V
V _{CL}	IEC61000-4-5 Surge 8/20μs	I _{PP} =15А I _{PP} =-15А		15 -3		v
CJ	Junction Capacitance	V _{I/O} = 0V, f = 1MHz, Any I/O Pin to GND		120		pF

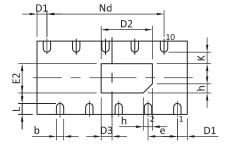

Notes:

3. These specifications are guaranteed by design and characterization.

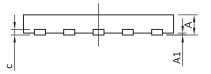
4. Measurements performed using a 100ns Transmission Line Pulse (TLP) system.


Typical Performance Characteristics



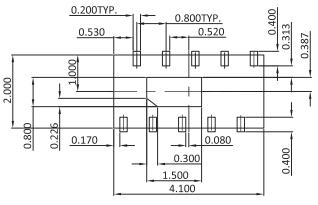

www.aosmd.com

Package Dimensions, DFN4.1x2.0-10L, EP1_S



TOP VIEW

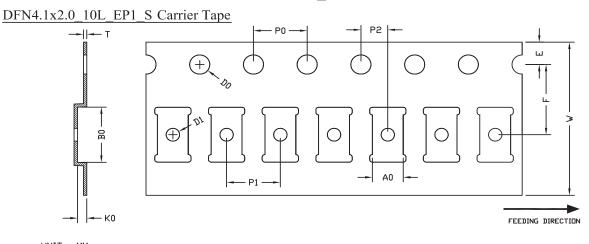
SIDE VIEW



SIDE VIEW

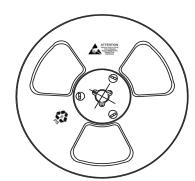
	DIMENS	ION IN MI	LLIMETRES	DIM	ENSION IN I	NCHS		
SYMBOLS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
А	0.45	0.50	0.55	0.018	0.020	0.022		
A1		0.02	0.05		0.001	0.002		
b	0.15	0.20	0.25	0.006	0.008	0.010		
С	0.10	0.15	0.20	0.004	0.006	0.008		
D	4.00	4.10	4.20	0.157	0.161	0.165		
D1	0.20	0.25	0.30	0.008	0.010	0.012		
D2	1.30	1.40	1.50	0.051	0.055	0.059		
D3	0.25	0.30	0.35	0.010	0.012	0.014		
е		0.80 BSC			0.031 BSC			
Nd		3.20 BSC			0.126 BSC			
E	1.90	2.00	2.10	0.075	0.079	0.083		
E2	0.70	0.80	0.90	0.028	0.031	0.035		
К	0.20			0.008				
L	0.25	0.30	0.35	0.010	0.012	0.014		
h	0.15	0.20	0.25	0.006	0.008	0.010		

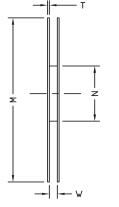
LAND PATTERN RECOMMENDATIONS

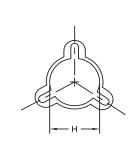

UNIT: mm

NOTES

1. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

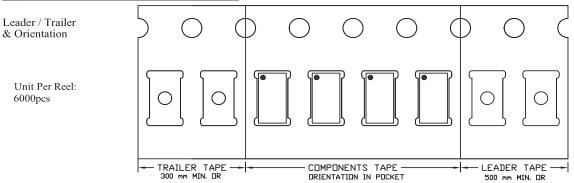



Tape and Reel Dimensions, DFN4.1x2.0-10L, EP1_S



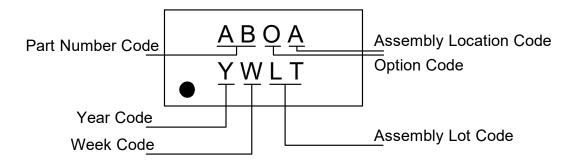
UNII: MM												
PACKAGE	A0	BO	К0	DO	D1	W	E	F	P0	P1	P2	т
DFN4.1×2.0	2.30 ±0.05	4.30 ±0.05	0.70 ±0.05	1.50 +0.1 -0.0	1.00 Min.	12.00 +0.30 -0.10	1.75 ±0.10	5.50 ±0.05	4.00 ±0.10	4.00 ±0.10	2.00 ±0.05	0.25 ±0.03

DFN4.1x2.0_10L_EP1_S_Reel



UNIT: MM

TAPE SIZE	REEL SIZE	м	N	W	Т	н	к	S	G	R	V
12 mm	ø329	Ø329.00 ±1.00	ø100.00 ±1.00	12.80 ±1.00	2.00 ±0.30	ø13.30 ±0.30					


DFN4.1x2.0_10L_EP1_S Package Tape

Part Marking

AOZ8936DI (DFN4.1x2.0_10L)

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. AOS does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms and conditions of sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.aosmd.com