General Description

The AOZ8S333UDS-05 is a 1-channel unidirectional high surge transient voltage suppressor designed to protect data lines such as USB2.0 from damaging ESD/surge events.

The AOZ8S333UDS-05 provides a typical capacitance of 0.5 pF and low clamping voltage making it ideally suited for data transmission protection in mobile and computing devices.

The AOZ8S333UDS-05 comes in a RoHS compliant and Halogen Free 1.0 mm × 0.6 mm package and is rated for -40°C to +125°C junction temperature range.

Features

- IEC 61000 4-2, ESD immunity:
 - Air discharge: ±25 kV
 - Contact Discharge: ±22 kV
- IEC61000-4-5 (8/20μS): 6A
- Human Body Mode (HBM): ±8kV
- Low capacitance: 0.5 pF
- Low clamping voltage
- Reverse Working Voltage: 5V

Applications

- USB2.0
- Mobile Phone
- Notebook computers
- Panel and Display

Typical Application

![Signal Line](image)

Pin Configuration

![DFN1.0x0.6-2L](image)
Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Ambient Temperature Range</th>
<th>Package</th>
<th>Environmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOZ8S333UDS-05</td>
<td>-40°C to +125°C</td>
<td>DFN1.0x0.6-2L</td>
<td>Green Product</td>
</tr>
</tbody>
</table>

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant. Please visit https://aosmd.com/sites/default/files/media/AOSGreenPolicy.pdf for additional information.

Absolute Maximum Ratings

Exceeding the Absolute Maximum Ratings may damage the device.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOZ8S333UDS-05 Pin1 to Pin2</td>
<td>5 V</td>
</tr>
<tr>
<td>Peak Pulse Current (I_{PP}), $t_P = 8/20\mu s$</td>
<td>±6 A</td>
</tr>
<tr>
<td>Peak Pulse Power (P_{PP}), $t_P = 8/20\mu s$</td>
<td>18 W</td>
</tr>
<tr>
<td>Storage Temperature (T_S)</td>
<td>-65 °C to +150°C</td>
</tr>
<tr>
<td>ESD Rating per IEC61000-4-2, contact$^{(1)}$</td>
<td>±22 kV</td>
</tr>
<tr>
<td>ESD Rating per IEC61000-4-2, air$^{(1)}$</td>
<td>±25 kV</td>
</tr>
<tr>
<td>EFT Rating per IEC61000-4-4 (5/50ns)</td>
<td>40 A</td>
</tr>
<tr>
<td>ESD Rating per Human Body Mode (HBM)$^{(2)}$</td>
<td>±8 kV</td>
</tr>
</tbody>
</table>

Notes:
1. IEC 61000-4-2 discharge with $C_{Discharge} = 150$ pF, $R_{Discharge} = 330$ Ω.
2. Human Body Discharge per MIL-STD-883, Method 3015 $C_{Discharge} = 100$ pF, $R_{Discharge} = 1.5$ kΩ.

Maximum Operating Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction Temperature (T_J)</td>
<td>-40 °C to +125 °C</td>
</tr>
</tbody>
</table>
Electrical Characteristics

\(T_A = 25^\circ C, \) unless otherwise noted. Any Pin to Pin.

Symbol Table

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{RWM})</td>
<td>Reverse Working Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>(V_{BR})</td>
<td>Reverse Breakdown Voltage</td>
<td>(I_T = 100\mu A)</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>(I_R)</td>
<td>Reverse Leakage Current</td>
<td>(V_T = \text{Max.} \ V_{RWM})</td>
<td>100</td>
<td>nA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{CL})</td>
<td>Clamping Voltage^{(3)} (100ns Transmission Line Pulse)</td>
<td>(I_{TLP} = 1A)</td>
<td>1.5</td>
<td></td>
<td>-1.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{TLP} = -1A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{TLP} = 16A)</td>
<td>5.5</td>
<td></td>
<td>-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{TLP} = -16A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{TLP} = 30A)</td>
<td>10</td>
<td></td>
<td>-16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(I_{TLP} = -30A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_J)</td>
<td>Junction Capacitance</td>
<td>(V_{I/O} = 0 \ V, f = 1\text{MHz})</td>
<td>0.5</td>
<td></td>
<td>0.9</td>
<td>pF</td>
</tr>
</tbody>
</table>

Notes:

3. Measurements performed using a 100ns Transmission Line Pulse (TLP) system.
4. These specifications are guaranteed by design and characterization.
Typical Characteristics

Positive Transmission Line Pulse
(tp = 100ns, tr = 10ns)

TLP Current (A)
TLP Voltage (V)

Negative Transmission Line Pulse
(tp = 100ns, tr = 10ns)

TLP Current (A)
TLP Voltage (V)

Typical Variations of CJ vs. Input Voltage

Input Voltage (V)
Capacitance (pF)

IEC61000-4-5 Surge 8/20us

Peak Pulse Current, IPP (A)
Clamping Voltage (V)

Pin1 to Pin2
Pin2 to Pin1
LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. Alpha and Omega Semiconductor does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS's products are provided subject to AOS’s terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.