AOS Semiconductor Product Reliability Report

AO4402L, revc

Plastic Encapsulated Device

ALPHA \& OMEGA Semiconductor, Inc
495 Mercury Drive
Sunnyvale, CA 94085
U.S.

Tel: (408) 830-9742
www.aosmd.com

ALPHA \& OMEGA
SEMICONDUCTOR

This AOS product reliability report summarizes the qualification result for AO4402L. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO4402L passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

I. Product Description
II. Package and Die information
III. Environmental Stress Test Summary and Result
IV. Reliability Evaluation

I. Product Description:

The AO4402L combines advanced trench MOSFET technology with a low resistance package to provide extremely low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$. This device is ideal for load switch and battery protection applications.
-RoHS Compliant

- Halogen Free

Detailed information refers to datasheet.

II. Die / Package Information:

AO4402L

Process
Package Type
Standard sub-micron Low voltage N channel

Lead Frame 8 leads SOIC

Die Attach
Bonding Wire
Mold Material
MSL (moisture sensitive level) Level 1 based on J-STD-020
Note * based on information provided by assembler and mold compound supplier

ALPHA \& OMEGA
SEMICONDUCTOR

III. Result of Reliability Stress for AO4402L

Test Item	Test Condition	Time Point	Lot Attribution	$\begin{aligned} & \text { Total } \\ & \text { Sample } \\ & \text { size } \end{aligned}$	Number of Failures	Standard
MSL Precondition	$168 \mathrm{hr} 85^{\circ} \mathrm{C}$ /85\%RH +3 cycle reflow@260	-	29 lots	3575pcs	0	$\begin{gathered} \text { JESD22- } \\ \text { A113 } \end{gathered}$
HTGB	$\begin{aligned} & \text { Temp }=150^{\circ} \mathrm{c}, \\ & \text { Vgs }=100 \% \text { of } \\ & \text { Vgsmax } \end{aligned}$	168hrs 500 hrs 1000 hrs	1 lot (Note A*)	77pcs 77pcs / lot	0	$\begin{gathered} \text { JESD22- } \\ \text { A108 } \end{gathered}$
HTRB	$\begin{aligned} & \text { Temp }=150{ }^{\circ} \mathrm{c}, \\ & \text { Vds }=80 \% \text { of } \\ & \text { Vdsmax } \end{aligned}$	168hrs 500 hrs 1000 hrs	1 lot (Note A*)	77pcs 77pcs / lot	0	$\begin{gathered} \text { JESD22- } \\ \text { A108 } \end{gathered}$
HAST	$\begin{aligned} & 130+/-2^{\circ} \mathrm{c}, \\ & 85 \% \mathrm{RH}, 33.3 \mathrm{psi}, \\ & \text { Vgs }=100 \% \text { of } \\ & \text { Vgs max } \end{aligned}$	100 hrs	16 lots (Note A*)	880pcs 55 pcs / lot	0	$\begin{gathered} \text { JESD22- } \\ \text { A110 } \end{gathered}$
Pressure Pot	$\begin{aligned} & 121^{\circ} \mathrm{c}, 29.7 \mathrm{psi}, \\ & \mathrm{RH}=100 \% \end{aligned}$	96 hrs	20 lots (Note A*)	1100pcs 55 pcs / lot	0	$\begin{gathered} \text { JESD22- } \\ \text { A102 } \end{gathered}$
Temperature Cycle	$-65^{\circ} \mathrm{c} \text { to } 150^{\circ} \mathrm{c}$ air to air	$250 / 500$ cycles	29 lots (Note A*)	1595pcs 55 pcs / lot	0	$\begin{gathered} \hline \text { JESD22- } \\ \text { A104 } \end{gathered}$

Note A: The reliability data presents total available generic data up to the published date.

IV. Reliability Evaluation

FIT rate (per billion): 46
MTTF = $\mathbf{2 4 7 8}$ years
The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AO4402L). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate $=\mathrm{Chi}^{2} \times 10^{9} /[2(\mathrm{~N})(\mathrm{H})(\mathrm{Af})]=1.83 \times 10^{9} /[2 \times 2 \times 77 \times 500 \times 258]=46$
MTTF $=10^{9} /$ FIT $=2.17 \times 10^{7} \mathrm{hrs}=2478$ years
$\mathbf{C h i}^{2}=$ Chi Squared Distribution, determined by the number of failures and confidence interval
$\mathbf{N}=$ Total Number of units from HTRB and HTGB tests
$\mathbf{H}=$ Duration of HTRB/HTGB testing
$\mathbf{A f}=$ Acceleration Factor from Test to Use Conditions ($\mathrm{Ea}=0.7 \mathrm{eV}$ and Tuse $=55^{\circ} \mathrm{C}$)
Acceleration Factor [Af] = Exp [Ea/k (1/Tju-1/Tjs)]
Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	258	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), $K=C+273.16$
Tj u = The use junction temperature in degree (Kelvin), $\mathrm{K}=\mathrm{C}+273.16$
$\mathrm{K}=$ Boltzmann's constant, $8.617164 \times 10^{-5} \mathrm{eV} / \mathrm{K}$

