

AOS Semiconductor Product Reliability Report

AO6602/AO6602L, rev B

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

495 Mercury Drive Sunnyvale, CA 94085 U.S.

Tel: (408) 830-9742

www.aosmd.com

Jan 11, 2006

This AOS product reliability report summarizes the qualification result for AO6602. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO6602passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

- I. Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation
- V. Quality Assurance Information

I. Product Description:

The AO6602 uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge. The complementary MOSFETs form a high-speed power inverter, suitable for a multitude of applications. Standard Product AO6602 is Pb-free (meets ROHS & Sony 259 specifications). AO6602L is a Green Product ordering option. AO6602 and AO6602L are electrically identical.

Absolute Maximum Ratings T _A =25°C unless otherwise noted						
Parameter		Symbol	Max n-channel	Max p-channel	Units	
Drain-Source Voltage		V _{DS}	30 -30		V	
Gate-Source Voltage		V_{GS}	±20	±20	V	
Continuous	T _A =25°C	I _D	3.1	-2.7		
Drain Current	T _A =70°C		2.4	-2.1		
Pulsed Drain Current		I _{DM}	12	-12	A	
Power	T _A =25°C	D	1.15	1.15	W	
Dissipation	T _A =70°C	P _D	0.73	0.73	vv	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	-55 to 150	°C	

Parameter	Symbol	Тур	Мах	Units	
Maximum Junction-to- Ambient	t ≤ 10s	$R_{ ext{ heta}JA}$	78	110	
Maximum Junction-to- Ambient	Steady-State		106	150	°C/W
Maximum Junction-to- Lead	Steady-State	$R_{ ext{ heta}JL}$	64	80	

II. Die / Package Information:

Process	AO6602 Standard sub-micron low voltage N channel process	AO6602L (Green Compound) Standard sub-micron low voltage N channel process
Package Type Lead Frame Die Attach Bond wire Mold Material Filler % (Spherical/Flake) Flammability Rating Backside Metallization	6 lead TSOP Copper with Solder Plate Silver epoxy 2 mils Au wire Epoxy resin with silica filler 90/10 UL-94 V-0 Ti / Ni / Ag	6 lead TSOP Copper with Solder Plate Silver epoxy 2 mils Au wire Epoxy resin with silica filler 100/0 UL-94 V-0 Ti / Ni / Ag
Moisture Level	Up to Level 1 *	Up to Level 1*

Note * based on info provided by assembler and mold compound supplier.

III. Result of Reliability Stress for AO6602 (Standard) & AO6602L (Green)

Test Item	Test Condition	Time Point	Lot Attribution	Total Sample size	Number of Failures
Solder Reflow Precondition	Standard: 1hr PCT+3 cycle reflow@260 C Green: 168hr 85 C/85%RH +3 cycle reflow@260 C	0hr	Standard: 12 lots Green: 7 lots	2805 pcs	0
HTGB	Temp = 150°C, Vgs=100% of Vgsmax	168 / 500 hrs 1000 hrs	4 lots (Note A*)	328 pcs 77+5 pcs / lot	0
HTRB	Temp = 150°C, Vds=80% of Vdsmax	168 / 500 hrs 1000 hrs	4 lots (Note A*)	328 pcs 77+5 pcs / lot	0
HAST	130 +/- 2°C, 85%RH, 33.3 psi, Vgs = 80% of Vgs max	100 hrs	Standard: 12 lots Green: 6 lots (Note B**)	990 pcs 50+5 pcs / lot	0
Pressure Pot	121°C, 15+/-1 PSIG, RH=100%	96 hrs	Standard: 7 lots Green: 7 lots (Note B**)	770 pcs 50+5 pcs / lot	0
Temperature Cycle	-65 C to 150 C, air to air, 0.5hr per cycle	250 / 500 cycles	Standard: 12 lots Green: 7 lots (Note B**)	1045 pcs 50+5 pcs / lot	0
DPA	Internal Vision Cross-section X-ray	NA	5 5 5	5 5 5	0
CSAM		NA	5	5	0

III. Result of Reliability Stress for AO6602 (Standard) & AO6602L (Green) Continues

Bond Integrity	Room Temp 150°c bake 150°c bake	0hr 250hr 500hr	40 40 40	40 wires 40 wires 40 wires	0
Solderability	230°c	5 sec	15	15 leads	0

Note A: The HTGB and HTRB reliability data presents total of available AO6602and AO6602L burn-in data up to the published date.

Note B: The pressure pot, temperature cycle and HAST reliability data for AO6602and AO6602L comes from the AOS generic package qualification data.

IV. Reliability Evaluation FIT rate (per billion): 10 MTTF = 11415 years

In general, 500 hrs of HTGB, 150 deg C accelerated stress testing is equivalent to 15 years of lifetime at 55 deg C operating conditions (by applying the Arrhenius equation with an activation energy of 0.7eV and 60% of upper confidence level on the failure rate calculation). AOS reliability group also routinely monitors the product reliability up to 1000 hr at and performs the necessary failure analysis on the units failed for reliability test(s). The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AO6602). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $Chi^2 \times 10^9 / [2 (N) (H) (Af)]$

=1.83 x 10^{9} /[2 (164) (168) (258) + 2(2×164) (500) (258) + 2(164) (1000) (258)] = 10 MTTF = 10^{9} / FIT = 1.0x 10^{8} hrs = 11415years

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval N = Total Number of units from HTRB and HTGB tests

H = Duration of HTRB/HTGB testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = $55^{\circ}C$) Acceleration Factor [Af] = **Exp** [Ea / k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	258	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u = The use junction temperature in degree (Kelvin), K = C+273.16

 \mathbf{k} = Boltzmann's constant, 8.617164 X 10⁻⁵ eV / K

V. Quality Assurance Information Acceptable Quality Level for outgoing inspection: 0.1% for electrical and visual. Guaranteed Outgoing Defect Rate: < 25 ppm Quality Sample Plan: conform to Mil-Std-105D