ALPHA \& OMEGA
SEMICONDUCTOR

# AOS Semiconductor Product Reliability Report 

AO6800, rev c

Plastic Encapsulated Device

ALPHA \& OMEGA Semiconductor, Inc

I nis AUS proauct remadinty report summarizes tne quanimcation resuit ior aUoठUU. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO6800 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

## Table of Contents:

I. Product Description
II. Package and Die information
III. Environmental Stress Test Summary and Result
IV. Reliability Evaluation

## I. Product Description:

The AO6800 uses advanced trench technology to provide excellent $R_{D S(O N)}$, low gate charge and operation with gate voltages as low as 2.5 V . This device is suitable for use as a load switch or in PWM applications.
-RoHS Compliant
-Halogen Free

Detailed information refers to datasheet.

## II. Die / Package Information:

Process

Package Type
Lead Frame
Die Attach
Bonding Wire
Mold Material
MSL (moisture sensitive level)

## A06800

Standard sub-micron
30V Dual N-channel MOSFET
TSOP6
Cu
Ag Epoxy
Au wire
Epoxy resin with silica filler
Level 1 based on J-STD-020

Note * based on information provided by assembler and mold compound supplier

## III. Resuit ot Reliability Stress tor AUbరUU

| Test Item | Test Condition | Time Point | Lot Attribution | Total <br> Sample <br> size | Number of Failures | Standard |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MSL Precondition | $168 \mathrm{hr} 85^{\circ} \mathrm{C}$ /85\%RH +3 cycle reflow@260ㅇ | - | 27 lots | 4917 pcs | 0 | $\begin{gathered} \hline \text { JESD22- } \\ \text { A113 } \end{gathered}$ |
| HTGB | $\begin{aligned} & \text { Temp }=150^{\circ} \mathrm{c}, \\ & \text { Vgs }=100 \% \text { of } \\ & \text { Vgsmax } \end{aligned}$ | 168hrs 500 hrs 1000 hrs | $\begin{gathered} 6 \text { lots } \\ 5 \text { lots } \\ \text { (Note } \left.\mathbf{A}^{*}\right) \end{gathered}$ | 847pcs <br> 77pcs / lot | 0 | $\begin{gathered} \text { JESD22- } \\ \text { A108 } \end{gathered}$ |
| HTRB | $\begin{aligned} & \text { Temp }=150{ }^{\circ} \mathrm{c}, \\ & \text { Vds }=80 \% \text { of } \\ & \text { Vdsmax } \end{aligned}$ | 168hrs 500 hrs 1000 hrs | $\begin{gathered} 6 \text { lots } \\ 5 \text { lots } \\ \text { (Note } \left.A^{*}\right) \end{gathered}$ | 847pcs <br> 77pcs / lot | 0 | $\begin{gathered} \hline \text { JESD22- } \\ \text { A108 } \end{gathered}$ |
| HAST | $\begin{aligned} & 130+/-2^{\circ} \mathrm{c}, \\ & 85 \% \mathrm{RH}, 33.3 \text { psi, } \\ & \text { Vgs = } 100 \% \text { of } \\ & \text { Vgs max } \\ & \hline \end{aligned}$ | 100 hrs | 18 lots <br> (Note A*) | 990 pcs <br> 55 pcs / lot | 0 | $\begin{gathered} \text { JESD22- } \\ \text { A110 } \end{gathered}$ |
| Pressure Pot | $\begin{aligned} & 121^{\circ} \mathrm{c}, 29.7 \mathrm{psi}, \\ & \mathrm{RH}=100 \% \end{aligned}$ | 96 hrs | 24 lots <br> (Note A*) | $1848 \text { pcs }$ <br> 77 pcs / lot | 0 | $\begin{gathered} \text { JESD22- } \\ \text { A102 } \end{gathered}$ |
| Temperature Cycle | $\begin{aligned} & -65^{\circ} \mathrm{c} \text { to } 150^{\circ} \mathrm{c}, \\ & \text { air to air } \end{aligned}$ | $250 / 500$ <br> cycles | 27 lots <br> (Note A*) | $\begin{aligned} & 2079 \text { pcs } \\ & 77 \text { pcs / lot } \end{aligned}$ | 0 | $\begin{gathered} \text { JESD22- } \\ \text { A104 } \end{gathered}$ |

Note A: The reliability data presents total of available generic data up to the published date.

## IV. Reliability Evaluation

FIT rate (per billion): 3
MTTF = 39656 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AO6800). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate $=\mathrm{Chi}^{2} \times 10^{9} /[2(\mathrm{~N})(\mathrm{H})(\mathrm{Af})]$

$$
=1.83 \times 10^{9} /[2 \times(12 \times 77 \times 168+6 \times 77 \times 500+4 \times 77 \times 1000) \times 258]=3
$$

MTTF $=10^{9} /$ FIT $=3.47 \times 10^{8} \mathrm{hrs}=39656$ years
$\mathbf{C h i}^{2}=$ Chi Squared Distribution, determined by the number of failures and confidence interval
$\mathbf{N}=$ Total Number of units from HTRB and HTGB tests
$\mathbf{H}=$ Duration of HTRB/HTGB testing
$\mathbf{A f}=$ Acceleration Factor from Test to Use Conditions ( $\mathrm{Ea}=0.7 \mathrm{eV}$ and Tuse $=55^{\circ} \mathrm{C}$ )
Acceleration Factor [Af] = Exp [Ea/k (1/Tju-1/Tj s)]
Acceleration Factor ratio list:

|  | 55 deg C | 70 deg C | 85 deg C | 100 deg C | 115 deg C | 130 deg C | 150 deg C |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Af | 258 | 87 | 32 | 13 | 5.64 | 2.59 | 1 |

Tj s = Stressed junction temperature in degree (Kelvin), $K=C+273.16$
Tju = The use junction temperature in degree (Kelvin), $\mathrm{K}=\mathrm{C}+273.16$
$\mathrm{K}=$ Boltzmann's constant, $8.617164 \times 10^{-5} \mathrm{eV} / \mathrm{K}$

