

Alpha & Omega Semiconductor Product Reliability qualification Report

AOB66216L, rev A

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc www.aosmd.com

This AOS product reliability report summarizes the qualification result for AOB66216L. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AOB66216L passes AOS quality and reliability requirements. The released product will be categorized by the process family and be routine monitored for continuously improving the product quality.

I. Reliability Stress Test Summary and Results

Test Item	Test Condition	Time Point	Total Sample Size	Number of Failures	Reference Standard
HTGB	Vgs=100% of Vgsmax		231 pcs	0	JESD22-A108
HTRB	Temp = 175°C , Vds=100% of Vdsmax	1000 hrs	231 pcs	0	JESD22-A108
HAST	168hr 85°C / 85%RH + 3 cycle reflow@245°C (MSL 1)*	-	221 nos	0	JESD22-A113
	130°C , 85%RH, 33.3 psia, Vds = 80% of Vdsmax	96 hrs	231 pcs	0	ESD22-A110
нзткв	168hr 85°C / 85%RH + 3 cycle reflow@245°C (MSL 1)*	-	224	0	JESD22-A113
	85°C , 85%RH, Vds = 80% of Vdsmax	1000 hrs	231 pcs	0	JESD22-A101
Autoclave	168hr 85°C / 85%RH + 3 cycle reflow@245°C (MSL 1)*	-	221 nos	0	JESD22-A113
	121°C , 29.7psia, RH=100%	96 hrs	231 pcs	0	JESD22-A102
Temperature Cycle	168hr 85°C / 85%RH + 3 cycle reflow@245°C (MSL 1)*	-	221 nos	0	JESD22-A113
	-65°C to 150°C , air to air	1000 cycles	231 pcs	0	JESD22-A104

Note: The reliability data presents total of available generic data up to the published date.

II. Reliability Evaluation

FIT rate (per billion): 2.61 MTTF = 43670 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $Chi^2 x 10^9 / [2 (N) (H) (Af)] = 2.61$ **MTTF** = $10^9 / FIT = 43670 \text{ years}$

^{*:} MSL (Moisture Sensitivity Level) 1 based on J-STD-020

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval

N = Total Number of units from burn-in tests

H = Duration of burn-in testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C)

Acceleration Factor [Af] = Exp [Ea / k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	125 deg C	150 deg C	175 deg C
Af	758	256	95	38	9.7	2.9	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u =The use junction temperature in degree (Kelvin), K = C+273.16

k = Boltzmann's constant, 8.617164 X 10⁻⁵eV / K