

AOS Semiconductor Product Reliability Report

AOD486A/AOD486AL, rev A

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

495 Mercury Drive Sunnyvale, CA 94085 U.S.

Tel: (408) 830-9742 <u>www.aosmd.com</u>

Mar 19, 2007

This AOS product reliability report summarizes the qualification result for AOD486A. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AOD486A passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

- I. Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation
- V. Quality Assurance Information

I. Product Description:

The AOD486A uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It is ESD protected. This device is suitable for use in PWM, load switching and general purpose applications. Standard Product AOD486A is Pb-free (meets ROHS & Sony 259 specifications).

Absolute Maximum Ratings T _A =25°C unless otherwise noted					
Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V_{DS}	40	V	
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Drain	T _A =25°C		50		
Current	T _A =100°C	I _D	36	Α	
Pulsed Drain Current		I _{DM}	100		
Avalanche Current		I _{AR}	30	Α	
T _A =25°C		P _D	50	W	
Power Dissipation	T _A =100°C	r _D	25	VV	
	T _A =25°C	P _{DSM}	4.1	W	
Power Dissipation $T_A=70^{\circ}C$		□ DSM	2.7	VV	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 175	°C	

Thermal Characteristics							
Parameter	Symbol	Тур	Max	Units			
Maximum Junction-to- Ambient	T ≤ 10s		17.4	30	°C/W		
Maximum Junction-to-	Steady-	$R_{ hetaJA}$			0		
Ambient	State		45	60	°C/W		
Maximum Junction-to-Lead	Steady- State	$R_{\scriptscriptstyle{ hetaJL}}$	1.2	3	°C/W		

II. Die / Package Information:

AOD486AL (Green Compound)

Process Standard sub-micron Standard sub-micron

low voltage N channel process low voltage N channel process

Package Type3 leads TO2523 leads TO252Lead FrameCopperCopperDie AttachSoft solderSoft solder

Bond wire G: Au 1.3mils; S: Al 20mils G: Au 1.3mils; S: Al 20mils

Mold MaterialSoft solderSoft solderFiller % (Spherical/Flake)90/10100/0Flammability RatingUL-94 V-0UL-94 V-0Backside MetallizationTi / Ni / AgTi / Ni / AgMoisture LevelUp to Level 1 *Up to Level 1*

Note * based on info provided by assembler and mold compound supplier

III. Result of Reliability Stress for AOD486A (Standard) & AOD486AL (Green)

Test Item	Test Condition	Time Point	Lot Attribution	Total Sample size	Number of Failures
Solder Reflow Precondition	Standard: 1hr PCT+3 cycle reflow@260°c Green: 168hr 85°c /85%RH +3 cycle reflow@260°c	Ohr	Standard: 26 lots Green: 3 lots	4675pcs	0
HTGB	Temp = 150°c , Vgs=100% of Vgsmax	168 / 500 hrs 1000 hrs	4 lots (Note A*)	328pcs 77+5 pcs / lot	0
HTRB	Temp = 150°c , Vds=80% of Vdsmax	168 / 500 hrs 1000 hrs	4 lots (Note A*)	328pcs 77+5 pcs / lot	0
HAST	130 +/- 2°c , 85%RH, 33.3 psi, Vgs = 80% of Vgs max	100 hrs	Standard : 26 lots Green: 3 lots (Note B**)	1595pcs 50+5 pcs / lot	0
Pressure Pot	121°c , 15+/-1 PSIG, RH=100%	96 hrs	Standard : 25 lots Green: 3 lots (Note B**)	1540pcs 50+5 pcs / lot	0
Temperature Cycle	-65°c to 150°c , air to air	250 / 500 cycles	Standard : 25 lots Green: 3 lots (Note B**)	1540pcs 50+5 pcs / lot	0

III. Result of Reliability Stress for AOD486A (Standard) & AOD486AL (Green) Continues

DPA	Internal Vision Cross-section X-ray	NA	5 5 5	5 5 5	0
CSAM	.,	NA	5	5	0
Bond Integrity	Room Temp 150°c bake 150°c bake	0hr 250hr 500hr	40 40 40	40 wires 40 wires 40 wires	0
Solderability	245°c	5 sec	15	15 leads	0

Note A: The HTGB and HTRB reliability data presents total of available AOD486A and AOD486AL burn-in data up to the published date.

Note B: The pressure pot, temperature cycle, HAST and HTS reliability data for AOD486A and AOD486AL comes from the AOS generic package qualification data.

IV. Reliability Evaluation

FIT rate (per billion): 10.8 MTTF = 10569 years

In general, 500 hrs of HTGB, 150 deg C accelerated stress testing is equivalent to 15 years of lifetime at 55 deg C operating conditions (by applying the Arrhenius equation with an activation energy of 0.7eV and 60% of upper confidence level on the failure rate calculation). AOS reliability group also routinely monitors the product reliability up to 1000 hr at and performs the necessary failure analysis on the units failed for reliability test(s).

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AOD486A). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate= Chi² x 10⁹ / [2 (N) (H) (Af)] = 1.83 x 10⁹ / [2 (4×164) (500) (258)] = 10.8 **MTTF** = 10^9 / FIT = 9.25 x 10^7 hrs = 10569 years

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval

N = Total Number of units from HTRB and HTGB tests

H = Duration of HTRB/HTGB testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C)

Acceleration Factor [Af] = Exp [Ea / k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	258	87	32	13	5.64	2.59	1

Tis = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u =The use junction temperature in degree (Kelvin), K = C+273.16

 \mathbf{k} = Boltzmann's constant, 8.617164 X 10⁻⁵eV / K

V. Quality Assurance Information

Acceptable Quality Level for outgoing inspection: **0.1%** for electrical and visual. Guaranteed Outgoing Defect Rate: **< 25 ppm**Quality Sample Plan: conform to **Mil-Std-105D**