ALPHA \& OMEGA
SEMICONDUCTOR

AOS Semiconductor Product Reliability Report

AOD609,
Plastic Encapsulated Device

ALPHA \& OMEGA Semiconductor, Inc
495 Mercury Drive
Sunnyvale, CA 94085
U.S.

Tel: (408) 830-9742
www.aosmd.com

This AOS product reliability report summarizes the qualification result for AOD609. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AOD609 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

I. Product Description
II. Package and Die information
III. Environmental Stress Test Summary and Result
IV. Reliability Evaluation

I. Product Description:

The AOD609 uses advanced trench technology MOSFETs to provide excellent $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ and low gate charge. The complementary MOSFETs may be used in H-bridge, Inverters and other applications.
-RoHS Compliant
-Halogen Free*

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted					
Parameter		Symbol	Max n-channel	Max p-channel	Units
Drain-Source Voltage		$V_{D S}$	40	-40	V
Gate-Source Voltage		$V_{G S}$	± 20	± 20	V
Continuous Drain Current ${ }^{\mathrm{B}, \mathrm{H}}$	$\mathrm{T}_{\mathrm{c}}=25^{\circ} \mathrm{C}$		23	-20	A
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	10	17	-14	
Pulsed Drain Current ${ }^{\text {B }}$		lom	30	-30	
Avalanche Current ${ }^{\text {c }}$		$\mathrm{I}_{\text {AR }}$	14	-20	
Repetitive avalanche energy $\mathrm{L}=0.1 \mathrm{mH}^{\mathrm{C}}$		$\mathrm{E}_{\text {AR }}$	9.8	20	mJ
Power Dissipation	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	27	30	W
	$\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$		14	15	
Power Dissipation	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P ${ }_{\text {DSM }}$	2	2	W
	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$		1.3	1.3	
Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {STG }}$	-55 to 175	-55 to 175	${ }^{\circ} \mathrm{C}$

Thermal Characteristics: n -channel and p-channel						
Parameter		Symbol	Device	Typ	Max	Units
Maximum Junction-to-Ambient ${ }^{\text {A,D }}$	$\mathrm{t} \leq 10 \mathrm{~s}$	$\mathrm{R}_{\text {¢JA }}$	n -ch	17.4	25	${ }^{\circ} \mathrm{C} / \mathrm{N}$
Maximum Junction-to-Ambient ${ }^{\text {A,D }}$	Steady-State		n -ch	50	60	${ }^{\circ} \mathrm{C} / \mathrm{N}$
Maximum Junction-to-Lead ${ }^{\text {C }}$	Steady-State	$\mathrm{R}_{\text {өJC }}$	n -ch	4	5.5	${ }^{\circ} \mathrm{C} / \mathrm{N}$
Maximum Junction-to-Ambient ${ }^{\text {A,O }}$	$\mathrm{t} \leq 10 \mathrm{~s}$	$\mathrm{R}_{\text {өJA }}$	p-ch	16.7	25	${ }^{\circ} \mathrm{C} / \mathrm{N}$
Maximum Junction-to-Ambient ${ }^{\text {A,O }}$	Steady-State		p -ch	50	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction-to-Lead ${ }^{\text {c }}$	Steady-State	$\mathrm{R}_{\text {®JC }}$	p-ch	3.5	5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ALPHA \& OMEGA
SEMICONDUCTOR

II. Die / Package Information:

AOD609

Process

Package Type
Lead Frame
Die Attach
Bond wire
Mold Material
Flammability Rating
Backside Metallization
Moisture Level

Standard sub-micron
Low voltage $\mathrm{N}+\mathrm{P}$ channel process
3 leads TO252
$\mathrm{Cu}, \mathrm{S} / \mathrm{pad}, \mathrm{Ag}$ spot
Ag epoxy
G:1.3 mils Au; S: 2mils Cu
Epoxy resin with silica filler
UL-94 V-0
Ti / Ni / Ag
Up to Level 1 *

Note * based on info provided by assembler and mold compound supplier
III. Result of Reliability Stress for AOD609

Test Item	Test Condition	Time Point	Lot Attribution	Total Sample size	Number of Failures
Solder Reflow Precondition	$168 \mathrm{hr} 85^{\circ} \mathrm{C}$ /85\%RH + 3 cycle reflow@260ㄷ	-	9 lots	1210pcs	0
HTGB	$\begin{aligned} & \text { Temp }=150^{\circ} \mathrm{c}, \\ & \text { Vgs }=100^{\prime} \text { of Vgsmax } \end{aligned}$	$\begin{aligned} & \hline 168 / 500 \\ & \text { hrs } \\ & 1000 \mathrm{hrs} \end{aligned}$	1 lot (Note A*)	82pcs 77+5 pcs / lot	0
HTRB	$\begin{aligned} & \text { Temp }=150^{\circ} \mathrm{C}, \\ & \text { Vds }=80 \% \text { of Vdsmax } \end{aligned}$	$\begin{aligned} & \hline 168 / 500 \\ & \text { hrs } \\ & 1000 \mathrm{hrs} \end{aligned}$	1 lot (Note A*)	82pcs 77+5 pcs / lot	0
HAST	$130+/-2^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$, 33.3 psi, Vgs $=80 \%$ of Vgs max	100 hrs	9 lots (Note B**)	$\begin{aligned} & \hline 495 \mathrm{pcs} \\ & 50+5 \mathrm{pcs} / \\ & \text { lot } \\ & \hline \end{aligned}$	0
Pressure Pot	$\begin{aligned} & 121^{\circ} \mathrm{C}, 29.7 \mathrm{psi}, \\ & \mathrm{RH}=100 \% \end{aligned}$	96 hrs	$5 \text { lots }$ (Note B**)	$\begin{aligned} & \hline 275 \mathrm{pcs} \\ & 50+5 \mathrm{pcs} / \\ & \text { lot } \\ & \hline \end{aligned}$	0
Temperature Cycle	$-65^{\circ} \mathrm{c} \text { to } 150^{\circ} \mathrm{c}$ air to air,	$250 / 500$ cycles	8 lots (Note B**)	440pcs 50+5 pcs / lot	0

III. Result of Reliability Stress for AOD609

Continues

DPA	Internal Vision	NA	5	5	0
	Cross-section				
X-ray					

Note A: The HTGB and HTRB reliability data presents total of available AOD609 burn-in data up to the published date.
Note B: The pressure pot, temperature cycle and HAST reliability data for AOD609 comes from the AOS generic package qualification data.

IV. Reliability Evaluation

FIT rate (per billion): 64
MTTF = $\mathbf{1 7 8 0}$ years
The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AOD609). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate $=\mathrm{Chi}^{2} \times 10^{9} /[2(\mathrm{~N})(\mathrm{H})(\mathrm{Af})]=1.83 \times 10^{9} /[2(164)(500)(258)]=64$
MTTF $=10^{9} /$ FIT $=1.56 \times 10^{7} \mathrm{hrs}=1780$ years
$\mathbf{C h i}^{2}=$ Chi Squared Distribution, determined by the number of failures and confidence interval
N = Total Number of units from HTRB and HTGB tests
H = Duration of HTRB/HTGB testing
$\mathbf{A f}=$ Acceleration Factor from Test to Use Conditions (Ea $=0.7 \mathrm{eV}$ and Tuse $=55^{\circ} \mathrm{C}$)
Acceleration Factor [Af] = Exp $[\mathrm{Ea} / \mathbf{k}(1 / \mathrm{Tj} \mathbf{u}-1 / \mathrm{T} \mathrm{j})]$
Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	258	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16
Tj $\mathbf{u}=$ The use junction temperature in degree (Kelvin), $\mathrm{K}=\mathrm{C}+273.16$
$\mathbf{k}=$ Boltzmann's constant, $8.617164 \times 10^{-5} \mathrm{eV} / \mathrm{K}$

