

Alpha & Omega Semiconductor Product Reliability Qualification Report

AOK125A60FDL rev A

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

www.aosmd.com

This report delineates the product's quality and reliability test outcomes. Specific sample sizes undergo accelerated environmental tests, with corresponding electrical testing before and after each interval. Analysis of the conclusive electrical test results affirms the product's adherence to AOS quality and reliability standards in accordance with **JEDEC**. Reference to the existing qualification outcomes for similar products is warranted due to structural similarities. The released product will be classified by its process family and undergo regular monitoring to ensure continual enhancements in product quality.

I. Reliability Stress Test Summary and Results

Test Item	Test Condition	Duration	Lots/SS	Number of Failures	Reference Standard
HTGB High Temperature Gate Bias	150°C Vgs=100% of Vgsmax	1000 hrs	3 * 77	0/231	JESD22-A108
HTRB High Temperature Reverse Bias	150°C Vds=100% of Vdsmax	1000 hrs	3 * 77	0/231	JESD22-A108
HAST Highly Accelerated Stress Test	130°C, 85%RH, Vds = 80% of Vdsmax up to 42V	96 hrs	3 * 77	0/231	JESD22-A110
H3TRB High Humidity High Temperature Reverse Bias	85°C, 85%RH, Vds = 80% of Vdsmax up to 100V	1000 hrs	3 * 77	0/231	JESD22-A101
AC Autoclave	121°C, 100%RH, 15psig	96 hrs	3 * 77	0/231	JESD22-A102
TC Temperature Cycling	-65°C to 150°C, air to air	1000 cycles	3 * 77	0/231	JESD22-A104
IOL Intermittent Operational Life	ermittent t _{on} = 5 minutes		3 * 77	0/231	MIL-STD-750 Method 1037
ESD_HBM	Class 2 (2000V~3999V)		3 pcs	-	JS-001
ESD_CDM	Class C3 (≥1000V)	-	3 pcs	-	JS-002

II. Reliability Evaluation

FIT rate (per billion): 7.63 MTTF = 14960 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

At 60% Confidence Level

Failure Rate = $Chi^2 \times 10^9 / [2 (N) (H) (Af)] = 7.63$

MTTF = 10^9 / FIT = 14960 years

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval

N = Total Number of units from burn-in tests

H = Duration of burn-in testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and T_J u = 55°C)

Acceleration Factor [Af] = Exp [Ea/k (1/TJ u - 1/TJ s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	259	87	32	13	5.64	2.59	1

 T_J s = Stressed junction temperature in degree (Kelvin), K = C + 273.16

 $T_J u$ =The use junction temperature in degree (Kelvin), K = C + 273.16

k = Boltzmann's constant, 8.617164 X 10⁻⁵eV / K