

AOS Semiconductor Product Reliability Report

AON4703/AON4703L, rev B

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

495 Mercury Drive Sunnyvale, CA 94085 U.S.

Tel: (408) 830-9742 <u>www.aosmd.com</u>

10 Jan, 2006

This AOS product reliability report summarizes the qualification result for AON4703. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AON4703 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

- I. Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation
- V. Quality Assurance Information

I. Product Description:

The AON4703 uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge. A Schottky diode is provided to facilitate the implementation of a bidirectional blocking switch, or for DC-DC conversion applications. Standard Product AON4703 is Pb-free (meets ROHS & Sony 259 specifications). AON4703L is a Green Product ordering option. AON4703 and AON4703L are electrically identical.

electrically identical.							
Absolute Maximum Ratings T _A =25°C unless otherwise noted							
Parameter		Symbol	MOSFET	Schottky	Units		
Drain-Source Voltage		V_{DS}	-20		V		
Gate-Source Voltage		V_{GS}	± 8		V		
Continuous Drain T _A =25°C			-3.4				
Current	T _A =70°C	I_D	-2.7		Α		
Pulsed Drain Current		I _{DM}	-15				
Schottky reverse voltage		V_{KA}		20	V		
Continuous Forward	T _A =25°C	 - _F		1.9			
Current	T _A =70°C	'F		1.2	Α		
Pulsed Forward Current		I _{FM}		7			
	T _A =25°C	P _D	1.7	0.96	w		
Power Dissipation	T _A =70°C	' D	1.1	0.62	VV		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	-55 to 150	°C		

Parameter: Thermal Characte					
MOSFET	Symbol	Тур	Max	Units	
Maximum Junction-to-	T ≤ 10s		E4	75	°C/M
Ambient			51	75	°C/W
Maximum Junction-to-	Steady-	$R_{ hetaJA}$			
Ambient	State		88	110	°C/W
Maximum Junction-to-Lead	Steady-				
Maximum Junction-to-Lead	State	$R_{ heta JC}$	28	35	°C/W

Thermal Characteristics Scho	Symbol	Тур	Max	Units	
Maximum Junction-to- Ambient	T ≤ 10s	В	66	80	°C/W
Maximum Junction-to- Ambient	Steady- State	$R_{ hetaJA}$	95	130	°C/W
Maximum Junction-to-Lead	Steady- State	$R_{ hetaJC}$	40	50	°C/W

II. Die / Package Information:

AON4703 AON4703L (Green Compound)

Process Standard sub-micron Standard sub-micron

Low voltage P channel process Low voltage P channel process

Package Type DFN 3X2 DFN 3X2

Lead Frame Copper with Ag spot Copper with Ag spot

Die AttachAg epoxyAg epoxyBond wireAu 2milsAu 2 mils

Mold Material Epoxy resin with silica filler Epoxy resin with silica filler

 Filler % (Spherical/Flake)
 90/10
 100/0

 Flammability Rating
 UL-94 V-0
 UL-94 V-0

 Backside Metallization
 Ti / Ni / Ag
 Ti / Ni / Ag

 Moisture Level
 Up to Level 1 *
 Up to Level 1*

Note * based on info provided by assembler and mold compound supplier

III. Result of Reliability Stress for AON4703 (Standard) & AON4703L (Green)

Test Item	Test Condition	Time Point	Lot Attribution	Total Sample size	Number of Failures
Solder Reflow Precondition	Standard: 1hr PCT+3 cycle reflow@260°c Green: 168hr 85°c /85%RH +3 cycle reflow @260°c	Ohr	Standard: 3 lots Green: 9 lots (Note B**)	1760 pcs	0
HTGB	Temp = 150°c , Vgs=100% of Vgsmax	168 / 500 hrs 1000 hrs	6 lots (Note A*)	492 pcs 77+5 pcs / lot	0
HTRB	Temp = 150°c , Vds=80% of Vdsmax	168 / 500 hrs 1000 hrs	6 lots (Note A*)	492 pcs 77+5 pcs / lot	0
HAST	130 +/- 2°c , 85%RH, 33.3 psi, Vgs = 80% of Vgs max	100 hrs	Standard: 3 lots Green: 7 lots (Note B**)	550 pcs 50+5 pcs / lot	0
Pressure Pot	121°c , 29.7psi, RH=100%	96 hrs	Standard: 3 lots Green: 8 lots (Note B**)	605 pcs 50+5 pcs / lot	0
Temperature Cycle	-65°c to 150°c , air to air,	250 / 500 cycles	Standard: 2 lots Green: 9 lot (Note B**)	605 pcs 50+5 pcs / lot	0

III. Result of Reliability Stress for AON4703 (Standard) & AON4703L (Green) Continued

DPA	Internal Vision	NA	5	5	0
	Cross-section		5	5	
	X-ray		5	5	
CSAM		NA	5	5	0
Bond	Room Temp	0hr	40	40 wires	0
Integrity	150°c bake	250hr	40	40 wires	
into grity	150°c bake	500hr	40	40 wires	
Solderability	245°c	5 sec	15	15 leads	0
Die shear	150°c	0hr	10	10	0

Note A: The HTGB and HTRB reliability data presents total of available AON4703 and AON4703L burn-in data up to the published date.

Note B: The pressure pot, temperature cycle and HAST reliability data for AON4703 and AON4703L comes from the AOS generic package qualification data.

IV. Reliability Evaluation

FIT rate (per billion): 16 MTTF = 7134 years

In general, 500 hrs of HTGB, 150 deg C accelerated stress testing is equivalent to 15 years of lifetime at 55 deg C operating conditions (by applying the Arrhenius equation with an activation energy of 0.7eV and 60% of upper confidence level on the failure rate calculation). AOS reliability group also routinely monitors the product reliability up to 1000 hr at and performs the necessary failure analysis on the units failed for reliability test(s).

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AON4703). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $Chi^2 \times 10^9 / [2 (N) (H) (Af)]$

= $1.83 \times 10^9 / [2 (5 \times 164) (168) (258) + 2 (164) (500) (258)] = 16$

MTTF = 10^9 / FIT = 6.25×10^7 hrs = 7134 years

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval

N = Total Number of units from HTRB and HTGB tests

H = Duration of HTRB/HTGB testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C)

Acceleration Factor [Af] = Exp [Ea / k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	258	87	32	13	5.64	2.59	1

Tis = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tju = The use junction temperature in degree (Kelvin), K = C+273.16

k = Boltzmann's constant, 8.617164 X 10⁻⁵eV/K

V. Quality Assurance Information

Acceptable Quality Level for outgoing inspection: **0.1%** for electrical and visual.

Guaranteed Outgoing Defect Rate: < 25 ppm
Quality Sample Plan: conform to Mil-Std-105D