

Alpha & Omega Semiconductor Product Reliability Report

AOTL125A60, rev A

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

www.aosmd.com

Oct, 2020

This AOS product reliability report summarizes the qualification result for AOTL125A60. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AOTL125A60 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be routine monitored for continuously improving the product quality.

Test Item	Test Condition	Time Point	Total Sample Size	Number of Failures	Reference Standard
HTGB	Temp = 150°C 168 / 500 / 231 pcs 0 Vgs=100% of Vgsmax 1000 hours 231 pcs 0		0	JESD22-A108	
HTRB	Temp = 150°C 168 / 500 / 231 pcs 0 Vds=100% of Vdsmax 1000 hours 231 pcs 0		JESD22-A108		
Precondition (Note A)	168hr 85°C / 85%RH + 3 cycle reflow@260°C (MSL 1)	-	1386 pcs	0	JESD22-A113
HAST	130°C , 85%RH, 33.3 psia, Vds = 80% of Vdsmax up to 42V	96 hours	231 pcs	0	JESD22-A110
H3TRB	85°C , 85%RH, Vds = 80% of Vdsmax up to 100V	1000 hours	231 pcs	0	JESD22-A101
Autoclave	121°C , 29.7psia, RH=100%	96 hours	231 pcs	0	JESD22-A102
Temperature Cycle	-55°C to 150°C, air to air,	1000 cycles	231 pcs	0	JESD22-A104
HTSL	Temp = 150°C	1000 hours	231 pcs	0	JESD22-A103
IOL	Δ Tj = 100°C	15000 cycles	231 pcs	0	MIL-STD-750 Method 1037

I. Reliability Stress Test Summary and Results

Note: The reliability data presents total of available generic data up to the published date.

II. Reliability Evaluation

FIT rate (per billion): 7.63 MTTF = 14960 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = Chi² x 10⁹/ [2 (N) (H) (Af)] = 7.63

MTTF = 10⁹ / FIT = 14960 years

 Chi^2 = Chi Squared Distribution, determined by the number of failures and confidence interval N = Total Number of units from burn-in tests

H = Duration of burn-in testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = $55^{\circ}C$) Acceleration Factor [**Af**] = **Exp** [Ea / k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	259	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u =The use junction temperature in degree (Kelvin), K = C+273.16

 \mathbf{k} = Boltzmann's constant, 8.617164 X 10⁻⁵eV / K