AOS Semiconductor Product Reliability Report

AOZ1377DI-01 reva

Plastic Encapsulated Device

ALPHA \& OMEGA Semiconductor, Inc
475 Oakmead Parkway
Sunnyvale, CA 94085
United States
Tel: (408)830-9742
www.aosmd.com

The AOS product reliability report summarizes the qualification results for AOZ1377DI in DFN3X3-10L package.
Accelerated environmental tests are performed on a specific sample size, samples are electrically tested before and after each stress time point. Review of final electrical test results confirm that AOZ1377DI pass the AOS quality and reliability requirements. The released products will be categorized by its process family and routinely monitored for continuous improvement of product quality.

I. Reliability Stress Test Summary and Results

Test Item	Test Condition	Time Point	Sample Size / Lots	Number of Failures	Reference Standard
HTOL	$\begin{gathered} \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{IN}}=23 \mathrm{~V} \end{gathered}$	$168 / 500 \text { / }$ $1000 \text { hours }$	231 pcs (3 lots)	0	JESD22-A108
Preconditioning (Note A)	$\mathrm{T}_{\mathrm{A}}=30^{\circ} \mathrm{C}, \mathrm{RH}=60 \%+$ 3 cycle reflow @ $260^{\circ} \mathrm{C}$ (MSL 3)	192 hours	924 pcs (3 lots)	0	JESD22-A113
HAST	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=130^{\circ} \mathrm{C}, \mathrm{RH}=85 \%, \\ \mathrm{P}=33.3 \mathrm{psia}, \\ \mathrm{~V}, \\ \mathrm{IN}=23 \mathrm{~V} \end{gathered}$	96 hours	231 pcs (3 lots)	0	JESD22-A110
Temperature Cycle	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}, \\ \text { air to air } \end{gathered}$	500 / 1000 cycles	231 pcs (3 lots)	0	JESD22-A104
HTSL	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	$500 / 1000$ hours	231 pcs (3 lots)	0	JESD22-A103
Autoclave	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=121^{\circ} \mathrm{C}, \mathrm{RH}=100 \%, \\ \mathrm{P}=29.7 \text { psia } \end{gathered}$	96 hours	231 pcs (3 lots)	0	JESD22-A102
HTGB (MOSFET)	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V} \end{aligned}$	$168 / 500 \text { / }$ $1000 \text { hours }$	$\begin{gathered} 231 \\ (3 \text { lots }) \end{gathered}$	0	JESD22-A108
HTRB (MOSFET)	$\begin{gathered} \mathrm{T}_{J}=150^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{DS}}=30 \mathrm{~V} \end{gathered}$	$168 / 500 \text { / }$ $1000 \text { hours }$	$\begin{gathered} 231 \\ (3 \text { lots }) \end{gathered}$	0	JESD22-A108

Note A: MSL (Moisture Sensitivity Level) 3 based on J-STD-020

II. Reliability Evaluation

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the product technology. Failure Rate Determination is based on JEDEC Standard JESD 85.

FIT rate (failures per billion device hours): 12.89
MTTF = $\mathbf{7 7 . 6}$ million hrs
Condition: $\mathrm{V}_{\mathrm{o}}=23 \mathrm{~V}, \mathrm{~T}_{0}=55^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}(\mathrm{C})}=23 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}(\text { MOSFET })}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{s}(\mathrm{C})}=125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{s}(\text { MOSFET })}=150^{\circ} \mathrm{C}$
Sample Size: MOSFET $=6,153$, IC $=917$
The failure rate (λ) is calculated as follows:
$\lambda=\chi^{2}[C L,(2 f+2)] / 2 \times[1 /(S S \times t \times A F)] ;$ [equation 1] where $\quad C L=\%$ of confidence level $\mathrm{f}=$ number of failures
SS = sample size t = stress time

Looking up the $\chi^{2} / 2$ table for zero failure (burn-in) with 60% confidence, the value of $\chi^{2}[C L,(2 f+2)] / 2$ is 0.92 .
The Acceleration Factor (AF) is calculated from the following formula (both temperature and voltage acceleration factors are used in the final acceleration factor calculation) :
$\mathrm{AF}=\mathrm{AF}_{\mathrm{T}} \times \mathrm{AFv}=\exp \left[\left(\mathrm{E}_{\mathrm{a}} / \mathrm{k}\right) \times\left(1 / \mathrm{T}_{0}-1 / \mathrm{T}_{\mathrm{s}}\right)\right] \times \exp [\beta(\mathrm{Vs}-\mathrm{Vo})]$ where $\quad \mathrm{E}_{\mathrm{a}}=$ activation energy
$\mathrm{k}=$ Boltzmann constant
$\mathrm{T}_{0}=$ operating T_{J}
$\mathrm{T}_{\mathrm{s}}=$ stress T_{J}
$\mathrm{V}_{\mathrm{s}}=$ stress voltage
$\mathrm{V}_{0}=$ operating voltage $\beta=$ voltage acceleration coefficient

Assuming typical operating environment, $\mathrm{V}_{0}=14 \mathrm{~V}, \mathrm{~T}_{0}=55^{\circ} \mathrm{C}, \mathrm{E}_{\mathrm{a}}=0.7 \mathrm{eV}, \mathrm{V}_{\mathrm{s}(\mathrm{CC})}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}(\mathrm{MOSFET})}=30 \mathrm{~V}, \mathrm{~T}_{\mathrm{s}(\mathrm{CC})}=$ $125^{\circ} \mathrm{C}$ and $\mathrm{T}_{\text {s(MOSFET) }}=150^{\circ} \mathrm{C}, \beta=0.5$ (silicon defect)

$$
\begin{aligned}
& A F(\text { DriverIC })=\exp \left[\left(\frac{0.7}{8.617 E-5}\right) \cdot\left(\frac{1}{273+55}-\frac{1}{273+125}\right)\right] \cdot \exp [0.5 \cdot(23 \mathrm{~V}-23 \mathrm{~V})] \\
& A F(M O S F E T)=\exp \left[\left(\frac{0.7}{8.617 E-5}\right) \cdot\left(\frac{1}{273+55}-\frac{1}{273+150}\right)\right] \cdot \exp [0.5 \cdot(30 \mathrm{~V}-23 \mathrm{~V})]
\end{aligned}
$$

Substituting the values in equation 1 , we have $\lambda=2 \bullet \lambda(M O S F E T)+\lambda($ DriverIC $)=$

$\lambda=12.8910^{-9} \mathrm{hr}^{-1}$ or 12.89 FIT; MTTF $=(1 / \lambda)=77.6$ million hrs $=8,856$ years
The calculation shows failure rate is 12.89 FIT, MTTF is 77.6 million hours under typical operating conditions.

III. ESD and Latch Up Test Results

Test	Test Conditions	Total Sample Size	Number of Failures	Reference Standard
Electrostatic Discharge (Human Body Model)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},+/-4 \mathrm{kV}$	10	0	JESD-A114
Electrostatic Discharge (Charged Device Model)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},+/-1 \mathrm{kV}$	10	0	JESD-C101
Electrostatic Discharge (IEC)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},+/-8 \mathrm{kV}$ $($ VOUT, VIN)	10	0	IEC61000-4-2
Latch Up	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $+/-100 \mathrm{~mA}, 1.5 \mathrm{x}$ OV	10	0	JESD78
Latch Up	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$, $+/-100 \mathrm{~mA}, 1.5 \mathrm{x}$	10	0	JESD78

Note: ATE results are used to determine PASS/FAIL. Parametric shift<10\%.

