

AOS Semiconductor Product Reliability Report

AOZ1390DI-01 rev A

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

www.aosmd.com

The AOS product reliability report summarizes the qualification results for AOZ1390DI-01 in DFN3.5X3-14L package. Accelerated environmental tests are performed on a specific sample size, samples are electrically tested before and after each stress time point. Review of final electrical test results confirm that AOZ1390DI-01 pass the AOS quality and reliability requirements. The released products will be categorized by its process family and routinely monitored for continuous improvement of product quality.

I. AOZ1390DI-01 Full Reliability Stress Test Results

Test Item	Test Condition	Time Point	Sample Size / Lots	Number of Failures	Reference Standard
HTOL	T _J = 125°C, V _{IN} = 22V	168 hours		0	
		500 hours	231 pcs (3 lots)	0	JESD22-A108
		1000 hours		0	
Preconditioning (Note A)	T _A = 30°C, RH = 60% + 3 cycle reflow @ 260°C (MSL 3)	192 hours	924 pcs (3 lots)	0	JESD22-A113
HAST	T _A = 130°C, RH = 85%, P = 33.3psia, V _{IN} = 22V	96 hours	231 pcs (3 lots)	0	JESD22-A110
Temperature Cycle	T _A = -65°C to 150°C, air to air	500 cycles	224 mag (2 lata)	0	JESD22-A104
		1000 cycles	231 pcs (3 1015)	0	
HTSL	T _A = 150°C	1000 hours	231 pcs (3 lots)	0	JESD22-A103
Autoclave	T₄ = 121°C, RH = 100%, P =29.7psia	96 hours	231 pcs (3 lots)	0	JESD22-A102
HTGB	T _J = 150°C,	168 hours	231 (3 lots)	0	JESD22-A108
(MOSFET)	V _{GS} = 12V	500 hours	,		
HTRB	T _J = 150°C,	168 hours	231 (3 lots)	0	JESD22-A108
(MOSFET)	$V_{DS} = 30V$	500 hours		-	

Note: The reliability data presents total of available generic data up to the published date. Note A: MSL (Moisture Sensitivity Level) 3 based on J-STD-020

II. Reliability Evaluation

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the product technology. Failure Rate Determination is based on JEDEC Standard JESD 85.

FIT rate (failures per billion device hours): 0.216 MTTF = 4621.6 million hrs Condition: $V_o = 14V$, $T_o = 55^{\circ}C$, $V_{s(IC)} = 22V$, $V_{s(MOSFET)} = 30V$, $T_{s(IC)} = 125^{\circ}C$ and $T_{s(MOSFET)} = 150^{\circ}C$ Sample Size: MOSFET = 6,153, IC = 640

The failure rate (λ) is calculated as follows:		
$\lambda = \chi^2$ [CL,(2f+2)]/2 x [1/(SS x t x AF)]; [equation 1]	where	CL = % of confidence level f = number of failure SS = sample size t = stress time

Looking up the $\chi^2/2$ table for zero failure (burn-in) with 60% confidence, the value of χ^2 [CL,(2f+2)]/2 is 0.92.

The Acceleration Factor (AF) is calculated from the following formula (both temperature and voltage acceleration factors are used in the final acceleration factor calculation) :

$AF = AF_T x AF_V = exp[(E_a/k) x (1/T_0-1/T_s)] x exp[\beta (Vs-Vo)] where$	Э
--	---

 $\begin{array}{ll} E_a = activation \ energy \\ k &= Boltzmann \ constant \\ T_o = operating \ T_J \\ T_s = stress \ T_J \\ V_s = stress \ voltage \\ V_o = operating \ voltage \\ \beta &= voltage \ acceleration \ coefficient \end{array}$

Assuming typical operating environment, $V_o = 14V$, $T_o = 55^{\circ}C$, $E_a = 0.7eV$, $V_{s(IC)} = 22V$, $V_{s(MOSFET)} = 30V$, $T_{s(IC)} = 125^{\circ}C$ and $T_{s(MOSFET)} = 150^{\circ}C$, $\beta = 0.5$ (silicon defect)

$$AF(DriverIC) = exp\left[\left(\frac{0.7}{8.617E - 5}\right) \cdot \left(\frac{1}{273 + 55} - \frac{1}{273 + 125}\right)\right] \cdot exp\left[0.5 \cdot (22V - 14V)\right]$$
$$AF(MOSFET) = exp\left[\left(\frac{0.7}{8.617E - 5}\right) \cdot \left(\frac{1}{273 + 55} - \frac{1}{273 + 150}\right)\right] \cdot exp\left[0.5 \cdot (30V - 14V)\right]$$

Substituting the values in equation 1, we have $\lambda = 2 \cdot \lambda(MOSFET) + \lambda(DriverIC) =$

$$0.92 \bullet \frac{1}{\text{Sample Size} \bullet \text{Stress Duration} \bullet AF(MOSFET)} + \frac{1}{\text{sample Size} \bullet \text{Stress Duration} \bullet AF(DriverIC)} hr^{-1}$$

 λ = 0.216 10⁻⁹ hr ⁻¹ or 0.216 FIT; MTTF = (1/ λ) = 4621.6 million hrs = 527577 years

The calculation shows failure rate is 0.216 FIT, MTTF is 4621.6 million hours under typical operating conditions.

III. AOZ1390DI-01 ESD and Latch Up Test Results

Test	Test Conditions	Total Sample Size	Number of Failures	Reference Standard
Electrostatic Discharge Human Body Model	T _A = 25°C, +/-2kV	10	0	JESD-A114
Electrostatic Discharge Charged Device Model	T _A = 25°C, +/-1kV	10	0	JESD-C101
Latch Up	T _A = 25°C, +/-100mA, 1.27x OV	10	0	JESD78
Latch Up	T _A = 125°C, +/-100mA, 1.27x OV	10	0	JESD78

Note: ATE results are used to determine PASS/FAIL. Parametric shift<10%.

DFN3x3.5-14L (Top Transparent View)