

AOS Semiconductor Product Reliability Report

AOZ1390DI rev A

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

475 Oakmead Parkway Sunnyvale, CA 94085 United States

> Tel: (408)830-9742 www.aosmd.com

The AOS product reliability report summarizes the qualification results for AOZ1390DI in DFN3.5X3-14L package. Accelerated environmental tests are performed on a specific sample size, samples are electrically tested before and after each stress time point. Review of final electrical test results confirm that AOZ1390DI pass the AOS quality and reliability requirements. The released products will be categorized by its process family and routinely monitored for continuous improvement of product quality.

I. AOZ1390DI Full Reliability Stress Test Results

Test Item	Test Condition	Time Point	Sample Size / Lots	Number of Failures	Reference Standard
HTOL	T」 = 125°C, Vıℕ = 22V	168 hours		0	JESD22-A108
		500 hours	231 pcs (3 lots)	0	
		1000 hours		0	
Preconditioning (Note A)	T _A = 85°C, RH = 85% + 3 cycle reflow @ 260°C (MSL 3)	168 hours	924 pcs (3 lots)	0	JESD22-A113
HAST	T _A = 130°C, RH = 85%, P = 33.3psia, V _{IN} = 22V	96 hours	231 pcs (3 lots)	0	JESD22-A110
Temperature Cycle	T _A = -65°C to 150°C, air to air	500 cycles	231 pcs (3 lots)	0	- JESD22-A104
		1000 cycles	231 pcs (3 lots)	0	
HTSL	T _A = 150°C	1000 hours	231 pcs (3 lots)	0	JESD22-A103
Autoclave	T _A = 121°C, RH = 100%, P =29.7psia	96 hours	231 pcs (3 lots)	0	JESD22-A102
HTGB (MOSFET)	T _J = 150°C, V _{GS} = 12V	168 hours 500 hours	231 (3 lots)	0	JESD22-A108
HTRB (MOSFET)	T _J = 150°C, V _{DS} = 30V	168 hours 500 hours	231 (3 lots)	0	JESD22-A108

Note: The reliability data presents total of available generic data up to the published date. Note A: MSL (Moisture Sensitivity Level) 3 based on J-STD-020

II. Reliability Evaluation

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the product technology. Failure Rate Determination is based on JEDEC Standard JESD 85.

FIT rate (failures per billion device hours): 0.216 MTTF = 4621.6 million hrs Condition: $V_0 = 14V$, $T_0 = 55^{\circ}C$, $V_{s(IC)} = 22V$, $V_{s(MOSFET)} = 30V$, $T_{s(IC)} = 125^{\circ}C$ and $T_{s(MOSFET)} = 150^{\circ}C$

 $AF = AF_T \times AF_V = \exp[(E_a/k) \times (1/T_0 - 1/T_s)] \times \exp[\beta (Vs - Vo)]$ where

Sample Size: MOSFET = 6,153, IC = 640

The failure rate (λ) is calculated as follows:		
$λ = χ^2$ [CL,(2f+2)] /2 x [1/(SS x t x AF)]; [equation 1]	where	CL = % of confidence level f = number of failure SS = sample size t = stress time

Looking up the $\chi^2/2$ table for zero failure (burn-in) with 60% confidence, the value of χ^2 [CL,(2f+2)]/2 is 0.92.

The Acceleration Factor (AF) is calculated from the following formula (both temperature and voltage acceleration factors are used in the final acceleration factor calculation) :

 $\begin{array}{l} \mathsf{E}_a = \operatorname{activation\ energy}\\ \mathsf{k} &= \mathsf{Boltzmann\ constant}\\ \mathsf{T}_o = \operatorname{operating\ }\mathsf{T}_J\\ \mathsf{T}_s = \operatorname{stress\ }\mathsf{T}_J\\ \mathsf{V}_s = \operatorname{stress\ }\mathsf{voltage}\\ \mathsf{V}_o = \operatorname{operating\ }\mathsf{voltage}\\ \mathsf{\beta} &= \operatorname{voltage\ } \operatorname{acceleration\ coefficient} \end{array}$

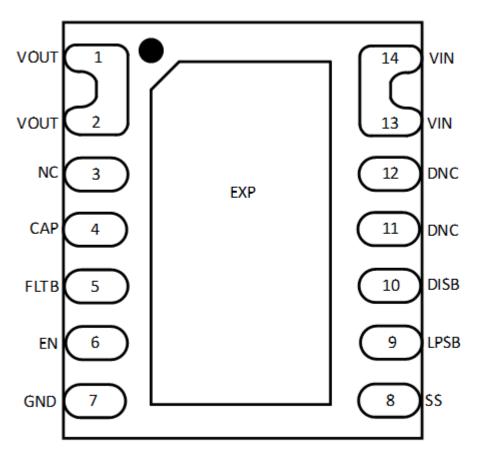
Assuming typical operating environment, $V_o = 14V$, $T_o = 55^{\circ}C$, $E_a = 0.7eV$, $V_{s(IC)} = 22V$, $V_{s(MOSFET)} = 30V$, $T_{s(IC)} = 125^{\circ}C$ and $T_{s(MOSFET)} = 150^{\circ}C$, $\beta = 0.5$ (silicon defect)

$$AF(DriverIC) = exp\left[\left(\frac{0.7}{8.617E - 5}\right) \cdot \left(\frac{1}{273 + 55} - \frac{1}{273 + 125}\right)\right] \cdot exp\left[0.5 \cdot (22V - 14V)\right]$$
$$AF(MOSFET) = exp\left[\left(\frac{0.7}{8.617E - 5}\right) \cdot \left(\frac{1}{273 + 55} - \frac{1}{273 + 150}\right)\right] \cdot exp\left[0.5 \cdot (30V - 14V)\right]$$

Substituting the values in equation 1, we have $\lambda = 2 \cdot \lambda(MOSFET) + \lambda(DriverIC) =$

$$0.92 \bullet \frac{1}{\text{Sample Size} \bullet \text{Stress Duration} \bullet AF(MOSFET)} + \frac{1}{\text{sample Size} \bullet \text{Stress Duration} \bullet AF(DriverIC)} hr^{-1}$$

 λ = 0.216 10⁻⁹ hr ⁻¹ or 0.216 FIT; MTTF = (1/ λ) = 4621.6 million hrs = 527577 years


The calculation shows failure rate is 0.216 FIT, MTTF is 4621.6 million hours under typical operating conditions.

III. AOZ1390DI ESD and Latch Up Test Results

Test	Test Conditions	Total Sample Size	Number of Failures	Reference Standard
Electrostatic Discharge Human Body Model	T _A = 25°C, +/-2kV	10	0	JESD-A114
Electrostatic Discharge Charged Device Model	T _A = 25°C, +/-1kV	10	0	JESD-C101
Latch Up	T _A = 25°C, +/-100mA, 1.27x OV	10	0	JESD78
Latch Up	T _A = 125°C, +/-100mA, 1.27x OV	10	0	JESD78

Note: ATE results are used to determine PASS/FAIL. Parametric shift<10%.

DFN3x3.5-14L (Top Transparent View)