AOS Semiconductor Product Reliability Report

AOZ13937DI-02 rev A

Plastic Encapsulated Device

ALPHA \& OMEGA Semiconductor, Inc

475 Oakmead Parkway
Sunnyvale, CA 94085
United States

Tel: (408)830-9742
www.aosmd.com

ALPHA \& OMEGA
SEMICONDUCTOR

The AOS product reliability report summarizes the qualification results for AOZ13937DI-02 in DFN3x3-12L package. Accelerated environmental tests are performed on a specific sample size, samples are electrically tested before and after each stress time point. Review of final electrical test results confirm that AOZ13937DI-02 pass the AOS quality and reliability requirements. The released products will be categorized by its process family and routinely monitored for continuous improvement of product quality.

I. Reliability Stress Test Summary and Results

Test Item	Test Condition	Time Point	Sample Size / Lots	Number of Failures	Reference Standard
HTOL	$\begin{gathered} \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{IN}}=32 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 168 / 500 / \\ & 1000 \text { hours } \end{aligned}$	231 pcs (3 lots)	0	JESD22-A108
Preconditioning (Note A)	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}, \mathrm{RH}=85 \%+$ 3 cycle reflow @ $260^{\circ} \mathrm{C}$ (MSL 1)	168 hours	924 pcs (3 lots)	0	JESD22-A113
HAST	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=130^{\circ} \mathrm{C}, \mathrm{RH}=85 \%, \\ \mathrm{P}=33.3 \mathrm{psia}, \\ \mathrm{~V}, \mathrm{IN}=32 \mathrm{~V} \end{gathered}$	96 hours	231 pcs (3 lots)	0	JESD22-A110
$\begin{gathered} \text { Pre-con + } \\ \text { PCT (autoclave) } \end{gathered}$	$\begin{gathered} 121^{\circ} \mathrm{C}, 29.7 \text { psia } \\ \text { RH }=100 \% \end{gathered}$	96 hours	231 pcs (3 lots)	0	JESD22-A102
Temperature Cycle	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}, \\ \text { air to air } \end{gathered}$	500 / 1000 cycles	231 pcs (3 lots)	0	JESD22-A104
HTSL	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	1000 hours	231 pcs (3 lots)	0	JESD22-A103
HTGB (MOSFET)	$\begin{gathered} \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 168 / 500 / \\ & 1000 \text { hours } \end{aligned}$	$\begin{gathered} 231 \\ (3 \text { lots }) \end{gathered}$	0	JESD22-A108
HTRB (MOSFET)	$\begin{gathered} \mathrm{T}_{J}=150^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{DS}}=39 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 168 / 500 / \\ & 1000 \text { hours } \end{aligned}$	$\begin{gathered} 231 \\ (3 \text { lots) } \end{gathered}$	0	JESD22-A108
Mechanical Shock	$\begin{gathered} \text { Condition B } \\ \mathrm{a}=1500 \mathrm{~g} ; \mathrm{t}=0.5 \mathrm{~ms} \end{gathered}$	5 shocks / side	$\begin{gathered} 30 \\ \text { (3 lots) } \end{gathered}$	0	JESD22-B110B

Note: The reliability data presents total of available generic data up to the published date.
Note A: MSL (Moisture Sensitivity Level) 1 based on J-STD-020

II. Reliability Evaluation

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the product technology. Failure Rate Determination is based on JEDEC Standard JESD 85.

FIT rate (failures per billion device hours): $\mathbf{0 . 4 6 0}$
MTTF $=\mathbf{2 , 1 7 4 . 7}$ million hrs
The failure rate (λ) is calculated as follows:
$\lambda=\chi^{2}[\mathrm{CL},(2 \mathrm{f}+2)] / 2 \times[1 /(\mathrm{SS} \times \mathrm{t} \times \mathrm{AF})]$; [equation 1] \quad where $\quad \begin{array}{ll}\mathrm{CL} & =\% \text { of confidence level } \\ \mathrm{f} & =\text { number of failure } \\ \mathrm{SS} & =\text { sample size } \\ \mathrm{t} & =\text { stress time }\end{array}$
Looking up the $\chi^{2} / 2$ table for zero failure (burn-in) with 60% confidence, the value of $\chi^{2}[C L,(2 f+2)] / 2$ is 0.92 .

The Acceleration Factor (AF) is calculated from the following formula (both temperature and voltage acceleration factors are used in the final acceleration factor calculation) :
$A F=A F_{T} \times A F v=\exp \left[\left(E_{a} / k\right) \times\left(1 / T_{0}-1 / T_{s}\right)\right] \times \exp \left[\beta\left(V_{s}-V_{0}\right)\right]$ where
$E_{a}=$ activation energy
$k=$ Boltzmann constant
$T_{0}=$ operating T_{J}
$T_{s}=$ stress T_{J}
$V_{S}=$ stress voltage
$V_{0}=$ operating voltage
$\beta=$ voltage acceleration coefficient

Assuming typical operating environment, $\mathrm{V}_{\mathrm{o}}=25 \mathrm{~V}, \mathrm{~T}_{\mathrm{o}}=55^{\circ} \mathrm{C}, \mathrm{E}_{\mathrm{a}}=0.7 \mathrm{eV}, \mathrm{V}_{\mathrm{s}(\text { DriverlC) })}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}(\mathrm{MOSFET})}=30 \mathrm{~V}$, $\mathrm{T}_{\mathrm{s}}=150^{\circ} \mathrm{C}, \beta=0.5$ (silicon defect)

$$
\begin{aligned}
& A F(\text { DriverIC })=\exp \left[\left(\frac{0.7}{8.617 E-5}\right) \bullet\left(\frac{1}{273+55}-\frac{1}{273+150}\right)\right] \bullet \exp [0.5 \bullet(28 V-25 V)] \\
& A F(M O S F E T)=\exp \left[\left(\frac{0.7}{8.617 E-5}\right) \bullet\left(\frac{1}{273+55}-\frac{1}{273+150}\right)\right] \bullet \exp [0.5 \bullet(30 V-25 V)]
\end{aligned}
$$

Substituting the values in equation 1 , we have $\lambda=2 \bullet \lambda($ MOSFET $)+\lambda($ DriverIC $)=$
$0.92 \bullet \frac{2}{\text { Sample Size } \bullet \text { Stress Duration } \bullet A F(M O S F E T)}+\frac{1}{\text { sample Size } \bullet \text { Stress Duration } \bullet A F(\text { DriverIC })} h^{-1}$
$\lambda=0.46010^{-9} \mathrm{hr}^{-1}$ or 0.460 FIT; MTTF $=(1 / \lambda)=2,174.7$ million hrs $=248,251$ years
The calculation shows failure rate is 0.460 FIT, MTTF is $2,174.7$ million hours under typical operating conditions.

ALPHA \& OMEGA
SEMICONDUCTOR

ELECTROSTATIC DISCHARGE, LATCH UP

TEST REPORT

Part Number: AOZ13937DI-02
Package: DFN3x3_12L

ESD, LATCH UP RESULTS					
Test	Specification	Conditions	Temperature	Sample Size	Results $^{(2)}$
Electrostatic Discharge	JESD-A114	$\pm 2.5 \mathrm{kV}(\mathrm{HBM})$	25 C	3	PASS
Electrostatic Discharge	JESD-C101	$\pm 1 \mathrm{kV}(\mathrm{CDM})$	25 C	3	PASS $^{\text {Jatch Up }}$
JESD78	$\pm 100 \mathrm{~mA}, 1.5 \mathrm{x} \mathrm{OV}$	25 C	6	PASS $^{(1)}$	
Latch Up	JESD78	$\pm 100 \mathrm{~mA}, 1.5 \mathrm{x}$ OV	125 C	6	PASS $^{(1)}$

Note:

1. CAP pin Current Inject $\pm 20 \mathrm{~mA}$ and FLTB pin Current Inject $\pm 50 \mathrm{~mA}$, Immunity Level B
2. ATE results are used to determine PASS/FAIL. Parametric shift $<10 \%$.

Pin Configuration

