AOS Semiconductor Product Reliability Report AOZ13937DI-02 rev A **Plastic Encapsulated Device** **ALPHA & OMEGA Semiconductor, Inc** 475 Oakmead Parkway Sunnyvale, CA 94085 United States Tel: (408)830-9742 www.aosmd.com The AOS product reliability report summarizes the qualification results for AOZ13937DI-02 in DFN3x3-12L package. Accelerated environmental tests are performed on a specific sample size, samples are electrically tested before and after each stress time point. Review of final electrical test results confirm that AOZ13937DI-02 pass the AOS quality and reliability requirements. The released products will be categorized by its process family and routinely monitored for continuous improvement of product quality. ### I. Reliability Stress Test Summary and Results | Test Item | Test Condition | Time Point | Sample Size / Lots | Number of
Failures | Reference
Standard | |------------------------------|---|---------------------------|---------------------|-----------------------|-----------------------| | HTOL | $T_J = 150^{\circ}C$,
$V_{IN} = 32V$ | 168 / 500 /
1000 hours | 231 pcs
(3 lots) | 0 | JESD22-A108 | | Preconditioning
(Note A) | T _A = 85°C, RH = 85% +
3 cycle reflow @ 260°C
(MSL 1) | 168 hours | 924 pcs
(3 lots) | 0 | JESD22-A113 | | HAST | T _A = 130°C, RH = 85%,
P = 33.3psia,
V _{IN} = 32V | 96 hours | 231 pcs
(3 lots) | 0 | JESD22-A110 | | Pre-con +
PCT (autoclave) | 121°C , 29.7psia,
RH=100% | 96 hours | 231 pcs
(3 lots) | 0 | JESD22-A102 | | Temperature
Cycle | $T_A = -65$ °C to 150°C, air to air | 500 / 1000
cycles | 231 pcs
(3 lots) | 0 | JESD22-A104 | | HTSL | T _A = 150°C | 1000 hours | 231 pcs
(3 lots) | 0 | JESD22-A103 | | HTGB
(MOSFET) | T _J = 150°C,
V _{GS} = 10V | 168 / 500 /
1000 hours | 231
(3 lots) | 0 | JESD22-A108 | | HTRB
(MOSFET) | T _J = 150°C,
V _{DS} = 39V | 168 / 500 /
1000 hours | 231
(3 lots) | 0 | JESD22-A108 | | Mechanical
Shock | Condition B
a = 1500g; t = 0.5ms | 5 shocks /
side | 30
(3 lots) | 0 | JESD22-B110B | **Note:** The reliability data presents total of available generic data up to the published date. Note A: MSL (Moisture Sensitivity Level) 1 based on J-STD-020 ### II. Reliability Evaluation The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the product technology. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT rate (failures per billion device hours): 0.460 MTTF = 2,174.7 million hrs The failure rate (λ) is calculated as follows: $\lambda = \chi^2[CL,(2f+2)]/2 \times [1/(SS \times t \times AF)];$ [equation 1] where CL = % of confidence level f = number of failure SS = sample size t = stress time Looking up the $\chi^2/2$ table for zero failure (burn-in) with 60% confidence, the value of χ^2 [CL,(2f+2)] /2 is 0.92. The Acceleration Factor (AF) is calculated from the following formula (both temperature and voltage acceleration factors are used in the final acceleration factor calculation): AF = AF_T x AF_V = exp[(E_a/k) x (1/T₀-1/T_s)] x exp[β (Vs-Vo)] where E_a = activation energy k = Boltzmann constant T_o = operating T_J $T_s = stress T_J$ V_s = stress voltage Vo = operating voltage β = voltage acceleration coefficient Assuming typical operating environment, $V_o = 25V$, $T_o = 55^{\circ}C$, $E_a = 0.7eV$, $V_{s(DriverIC)} = 28V$, $V_{s(MOSFET)} = 30V$, $T_s = 150^{\circ}C$, $\beta = 0.5$ (silicon defect) $$AF(DriverIC) = \exp\left[\left(\frac{0.7}{8.617E - 5}\right) \bullet \left(\frac{1}{273 + 55} - \frac{1}{273 + 150}\right)\right] \bullet \exp[0.5 \bullet (28V - 25V)]$$ $$AF(MOSFET) = \exp\left[\left(\frac{0.7}{8.617E - 5}\right) \bullet \left(\frac{1}{273 + 55} - \frac{1}{273 + 150}\right)\right] \bullet \exp[0.5 \bullet (30V - 25V)]$$ Substituting the values in equation 1, we have $\lambda = 2 \cdot \lambda(MOSFET) + \lambda(DriverIC) =$ $$0.92 \bullet \frac{2}{Sample\ Size \bullet Stress\ Duration \bullet\ AF(MOSFET)} + \frac{1}{sample\ Size \bullet\ Stress\ Duration \bullet\ AF(DriverIC)} hr^{-1}$$ $\lambda = 0.460 \ 10^{-9} \ hr^{-1} \ or \ 0.460 \ FIT; \ MTTF = (1/\lambda) = 2,174.7 \ million \ hrs = 248,251 \ years$ The calculation shows failure rate is 0.460 FIT, MTTF is 2,174.7 million hours under typical operating conditions. # ELECTROSTATIC DISCHARGE, LATCH UP TEST REPORT Part Number: AOZ13937DI-02 Package: DFN3x3_12L | ESD, LATCH UP RESULTS | | | | | | | | | |----------------------------|---------------|-----------------|-------------|----------------|-------------|--|--|--| | Test | Specification | Conditions | Temperature | Sample
Size | Results (2) | | | | | Electrostatic
Discharge | JESD-A114 | ±2.5kV (HBM) | 25C | 3 | PASS | | | | | Electrostatic
Discharge | JESD-C101 | ±1kV (CDM) | 25C | 3 | PASS | | | | | Latch Up | JESD78 | ±100mA, 1.5x OV | 25C | 6 | PASS (1) | | | | | Latch Up | JESD78 | ±100mA, 1.5x OV | 125C | 6 | PASS (1) | | | | ### Note: - 1. CAP pin Current Inject ±20mA and FLTB pin Current Inject ±50mA, Immunity Level B - 2. ATE results are used to determine PASS/FAIL. Parametric shift <10%. ### Pin Configuration DFN3x3-12L (Top Transparent View)