

# AOS Semiconductor Product Reliability Report

# AOZ13938DI-02

**Plastic Encapsulated Device** 

**ALPHA & OMEGA Semiconductor, Inc** 

475 Oakmead Parkway Sunnyvale, CA 94085 United States

> Tel: (408)830-9742 www.aosmd.com



The AOS product reliability report summarizes the qualification results for AOZ13938DI-02 in DFN3x3-12L package. Accelerated environmental tests are performed on a specific sample size, samples are electrically tested before and after each stress time point. Review of final electrical test results confirm that AOZ13938DI-02 pass the AOS quality and reliability requirements. The released products will be categorized by its process family and routinely monitored for continuous improvement of product quality.

# I. Reliability Stress Test Summary and Results

| Test Item                    | Test Condition                                                              | Time Point                | Sample Size<br>/ Lots | Number of<br>Failures | Reference<br>Standard |
|------------------------------|-----------------------------------------------------------------------------|---------------------------|-----------------------|-----------------------|-----------------------|
| HTOL                         | T <sub>J</sub> = 150°C,<br>V <sub>IN</sub> = 32V                            | 168 / 500 /<br>1000 hours | 231 pcs<br>(3 lots)   | 0                     | JESD22-A108           |
| Preconditioning<br>(Note A)  | T <sub>A</sub> = 85°C, RH = 85% +<br>3 cycle reflow @ 260°C<br>(MSL 1)      | 168 hours                 | 924 pcs<br>(3 lots)   | 0                     | JESD22-A113           |
| HAST                         | T <sub>A</sub> = 130°C, RH = 85%,<br>P = 33.3psia,<br>V <sub>IN</sub> = 32V | 96 hours                  | 231 pcs<br>(3 lots)   | 0                     | JESD22-A110           |
| Pre-con +<br>PCT (autoclave) | 121°C , 29.7psia,<br>RH=100%                                                | 96 hours                  | 231 pcs<br>(3 lots)   | 0                     | JESD22-A102           |
| Temperature<br>Cycle         | T <sub>A</sub> = -65°C to 150°C,<br>air to air                              | 500 / 1000<br>cycles      | 231 pcs<br>(3 lots)   | 0                     | JESD22-A104           |
| HTSL                         | T <sub>A</sub> = 150°C                                                      | 1000 hours                | 231 pcs<br>(3 lots)   | 0                     | JESD22-A103           |
| HTGB<br>(MOSFET)             | T <sub>J</sub> = 150°C,<br>V <sub>GS</sub> = 10V                            | 168 / 500 /<br>1000 hours | 231<br>(3 lots)       | 0                     | JESD22-A108           |
| HTRB<br>(MOSFET)             | T <sub>J</sub> = 150°C,<br>V <sub>DS</sub> = 39V                            | 168 / 500 /<br>1000 hours | 231<br>(3 lots)       | 0                     | JESD22-A108           |
| Mechanical<br>Shock          | Condition B<br>a = 1500g; t = 0.5ms                                         | 5 shocks /<br>side        | 30<br>(3 lots)        | 0                     | JESD22-B110B          |

**Note:** The reliability data presents total of available generic data up to the published date. Note A: MSL (Moisture Sensitivity Level) 1 based on J-STD-020

# **II. Reliability Evaluation**

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the product technology. Failure Rate Determination is based on JEDEC Standard JESD 85.

#### FIT rate (failures per billion device hours): 0.460 MTTF = 2,174.7 million hrs

The failure rate ( $\lambda$ ) is calculated as follows:  $\lambda = \chi^2$ [CL,(2f+2)] /2 x [1/(SS x t x AF)]; [equation 1]

where

CL = % of confidence level f = number of failure SS = sample size t = stress time

Looking up the  $\chi^2/2$  table for zero failure (burn-in) with 60% confidence, the value of  $\chi^2$ [CL,(2f+2)]/2 is 0.92.



The Acceleration Factor (AF) is calculated from the following formula (both temperature and voltage acceleration factors are used in the final acceleration factor calculation) :

- $AF = AF_T x AF_V = exp[(E_a/k) x (1/T_0-1/T_s)] x exp[\beta (Vs-Vo)] where$
- $E_a$  = activation energy
- k = Boltzmann constant
- $T_o = operating T_J$
- $T_s = stress T_J$
- Vs = stress voltage
- $V_{\circ}$  = operating voltage
- $\beta$  = voltage acceleration coefficient

Assuming typical operating environment,  $V_o = 25V$ ,  $T_o = 55^{\circ}C$ ,  $E_a = 0.7eV$ ,  $V_{s(DriverIC)} = 28V$ ,  $V_{s(MOSFET)} = 30V$ ,  $T_s = 150^{\circ}C$ ,  $\beta = 0.5$  (silicon defect)

$$AF(DriverIC) = \exp\left[\left(\frac{0.7}{8.617E - 5}\right) \bullet \left(\frac{1}{273 + 55} - \frac{1}{273 + 150}\right)\right] \bullet \exp[0.5 \bullet (28V - 25V)]$$
$$AF(MOSFET) = \exp\left[\left(\frac{0.7}{8.617E - 5}\right) \bullet \left(\frac{1}{273 + 55} - \frac{1}{273 + 150}\right)\right] \bullet \exp[0.5 \bullet (30V - 25V)]$$

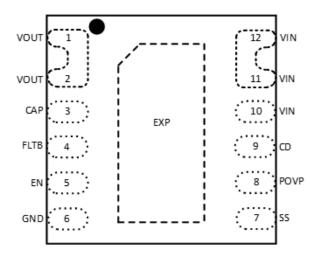
Substituting the values in equation 1, we have  $\lambda = 2 \cdot \lambda(MOSFET) + \lambda(DriverIC) =$ 

$$0.92 \bullet \frac{2}{Sample Size \bullet Stress Duration \bullet AF(MOSFET)} + \frac{1}{sample Size \bullet Stress Duration \bullet AF(DriverIC)} hr^{-1}$$

 $\lambda$  = 0.460 10<sup>-9</sup> hr <sup>-1</sup> or 0.460 FIT; MTTF = (1/  $\lambda$ ) = 2,174.7 million hrs = 248,251 years

The calculation shows failure rate is 0.460 FIT, MTTF is 2,174.7 million hours under typical operating conditions.




Part Number: AOZ13938DI-02 Package: DFN3x3\_12L

| ESD, LATCH UP RESULTS      |               |                 |             |                |                        |  |  |  |
|----------------------------|---------------|-----------------|-------------|----------------|------------------------|--|--|--|
| Test                       | Specification | Conditions      | Temperature | Sample<br>Size | Results <sup>(2)</sup> |  |  |  |
| Electrostatic<br>Discharge | JESD-A114     | ±2.5kV (HBM)    | 25C         | 3              | PASS                   |  |  |  |
| Electrostatic<br>Discharge | JESD-C101     | ±1kV (CDM)      | 25C         | 3              | PASS                   |  |  |  |
| Latch Up                   | JESD78        | ±100mA, 1.5x OV | 25C         | 6              | PASS <sup>(1)</sup>    |  |  |  |
| Latch Up                   | JESD78        | ±100mA, 1.5x OV | 125C        | 6              | PASS <sup>(1)</sup>    |  |  |  |

### Note:

- 1. CAP pin Current Inject ±20mA and FLTB pin Current Inject ±50mA, Immunity Level B
- 2. ATE results are used to determine PASS/FAIL. Parametric shift <10%.

#### **Pin Configuration**



DFN3x3-12L (Top Transparent View)