Alpha \& Omega Semiconductor Product Reliability Report

AOZ5276QI rev

Plastic Encapsulated Device

ALPHA \& OMEGA Semiconductor, Inc
475 Oakmead Parkway
Sunnyvale, CA 94085
United States
Tel: (408)830-9742
www.aosmd.com

ALPHA \& OMEGA
SEMICONDUCTOR

The AOS product reliability report summarizes the qualification results for AOZ5276QI in QFN5x6-39L package. Accelerated environmental tests are performed on a specific sample size, samples are electrically tested before and after each stress time point. Review of final electrical test results confirm that AOZ5276QI pass the AOS quality and reliability requirements. The released products will be categorized by its process family and routinely monitored for continuous improvement of product quality.
I. Reliability Stress Test Summary and Results

Test Item	Test Condition	Time Point	Sample Size / Lots	Number of Failures	Reference Standard
HTOL	$\begin{gathered} \mathrm{T}_{J}=150^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{IN}}=25 \mathrm{~V} \end{gathered}$	$168 / 500 /$ 1000 hours	$\begin{aligned} & 231 \mathrm{pcs} \\ & (3 \text { lots }) \end{aligned}$	0	JESD22-A108
Preconditioning (Note A)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}, \mathrm{RH}=85 \%+ \\ & 3 \text { cycle reflow @ } 260^{\circ} \mathrm{C} \\ & \text { (MSL 1) } \end{aligned}$	168hours	924 pcs (3 lots)	0	JESD22-A113
HAST	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=130^{\circ} \mathrm{C}, \mathrm{RH}=85 \%, \\ \mathrm{P}=33.3 \mathrm{psia}, \\ \mathrm{~V}_{\mathrm{IN}}=25 \mathrm{~V} \end{gathered}$	96 hours	231 pcs (3 lots)	0	JESD22-A110
Autoclave	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=121^{\circ} \mathrm{C}, \mathrm{RH}=100 \%, \mathrm{P} \\ =29.7 \mathrm{psia} \end{gathered}$	96 hours	231 pcs	0	JESD22-A102
Temperature Cycle	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}, \\ & \text { air to air } \end{aligned}$	500 / 1000 cycles	$\begin{aligned} & 231 \text { pcs } \\ & \text { (3 lots) } \end{aligned}$	0	JESD22-A104
HTSL	$\mathrm{T}_{\mathrm{A}}=150^{\circ} \mathrm{C}$	1000 hours	$\begin{aligned} & 231 \text { pcs } \\ & \text { (3 lots) } \end{aligned}$	0	JESD22-A103
Power Cycling	$\mathrm{V}_{\text {IN }}=19 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=1.0 \mathrm{~V}$, Fsw $=600 \mathrm{kHz}$, lout $=30 \mathrm{~A}$, VCC cycled 0V-5V @ 1hz	$24 \mathrm{hrs},>86 \mathrm{k}$ cycles	10 pcs (3 lots)	0	AOS Standard
HTGB (MOSFET)	$\begin{gathered} \mathrm{T}_{J}=150^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V} \end{gathered}$	168 / 500 / 1000 hours	$\begin{gathered} 231 \\ (3 \text { lots }) \end{gathered}$	0	JESD22-A108
HTRB (MOSFET)	$\begin{gathered} \mathrm{T}_{J}=150^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\mathrm{DS}(\mathrm{HS})}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}(\mathrm{LS})}=25 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 168 / 500 / \\ & 1000 \text { hours } \end{aligned}$	$\begin{gathered} 231 \\ (3 \text { lots }) \end{gathered}$	0	JESD22-A108
HT3RB (MOSFET)	$\begin{aligned} \mathrm{T}_{\mathrm{A}} & =130^{\circ} \mathrm{C}, \mathrm{RH}=85 \%, \\ \mathrm{P} & =33.3 \mathrm{psia}, \\ \mathrm{~V}_{\mathrm{DS}(\mathrm{HS})} & =30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}(\mathrm{LS})}=25 \mathrm{~V} \end{aligned}$	168 / 500 / 1000 hours	$\underset{\text { (3 lots) }}{231}$	0	JESD22-A101
Validation	3 cycle reflow @ $260^{\circ} \mathrm{C}+$ 250 cycles $@ \mathrm{~T}_{\mathrm{A}}=-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	250 cycles	$\begin{gathered} 3000 \\ (3 \text { lots }) \end{gathered}$	0	AOS Standard
Mechanical Shock	$\begin{gathered} \text { Condition } \mathrm{B} \\ \mathrm{a}=2000 \mathrm{~g}, \mathrm{t}=0.5 \mathrm{~ms} \\ 5 \text { shocks per side, } 6 \text { sides } \end{gathered}$	30 shocks / device	15	0	JESD22-B110

Note: The reliability data presents total of available generic data up to the published date.
Note A: MSL (Moisture Sensitivity Level) 1 based on J-STD-020

II. Reliability Evaluation

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the product technology. Failure Rate Determination is based on JEDEC Standard JESD 85.

FIT rate (failures per billion device hours): $\mathbf{0 . 1 9 0}$
MTTF $=\mathbf{5 , 2 5 1 . 7}$ million hrs
Condition: $\mathrm{V}_{0}=20 \mathrm{~V}, \mathrm{~T}_{0}=55^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}(\text { DiverIC })}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}(\text { MOSFET })}=30 \mathrm{~V} / 25 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{s}}=150^{\circ} \mathrm{C}$
Sample Size: MOSFET $=6,153$, Driver IC $=3,874$
The failure rate (λ) is calculated as follows:
$\lambda=\chi^{2}[\mathrm{CL},(2 \mathrm{f}+2)] / 2 \times[1 /(\mathrm{SS} \times \mathrm{t} \times \mathrm{AF})]$; [equation 1] where $\quad \mathrm{CL}=\%$ of confidence level $f=$ number of failure SS = sample size t = stress time

Looking up the $\chi^{2} / 2$ table for zero failure (burn-in) with 60% confidence, the value of $\chi^{2}[C L,(2 f+2)] / 2$ is 0.92 .
The Acceleration Factor (AF) is calculated from the following formula (both temperature and voltage acceleration factors are used in the final acceleration factor calculation) :
$A F=A F_{\tau} \times A F_{v}=\exp \left[\left(E_{a} / k\right) \times\left(1 / T_{0}-1 / T_{s}\right)\right] \times \exp [\beta(\mathrm{Vs}-\mathrm{Vo})]$ where

$$
\begin{aligned}
& E_{a}=\text { activation energy } \\
& k=\text { Boltzmann constant } \\
& T_{0}=\text { operating } T_{J} \\
& T_{s}=\text { stress } T_{J} \\
& \mathrm{~V}_{s}=\text { stress voltage } \\
& \mathrm{V}_{0}=\text { operating voltage } \\
& \beta=\text { voltage acceleration coefficient }
\end{aligned}
$$

Assuming typical operating environment, $\mathrm{V}_{\mathrm{o}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{o}}=55^{\circ} \mathrm{C}, \mathrm{E}_{\mathrm{a}}=0.7 \mathrm{eV}, \mathrm{V}_{\mathrm{s}(\text { DriverlC) })}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}(\text { MOSFET })}=30 \mathrm{~V} / 25 \mathrm{~V}$, $\mathrm{T}_{\mathrm{s}}=150^{\circ} \mathrm{C}, \beta=0.5$ (silicon defect)

$$
\begin{gathered}
A F(\text { DriverIC })=\exp \left[\left(\frac{0.7}{8.617 E-5}\right) \cdot\left(\frac{1}{273+55}-\frac{1}{273+150}\right)\right] \cdot \exp [0.5 \cdot(25 \mathrm{~V}-20 \mathrm{~V})] \\
A F(H S M O S F E T)=\exp \left[\left(\frac{0.7}{8.617 E-5}\right) \cdot\left(\frac{1}{273+55}-\frac{1}{273+150}\right)\right] \cdot \exp [0.5 \cdot(30 \mathrm{~V}-20 \mathrm{~V})] \\
A F(L S \text { MOSFET })=\exp \left[\left(\frac{0.7}{8.617 E-5}\right) \cdot\left(\frac{1}{273+55}-\frac{1}{273+150}\right)\right] \cdot \exp [0.5 \cdot(25 \mathrm{~V}-20 \mathrm{~V})]
\end{gathered}
$$

Substituting the values in equation 1 , we have $\lambda=\lambda(H S M O S F E T)+\lambda(L S$ MOSFET $)+\lambda(I C)=$
$0.92 \bullet \frac{2}{\text { Sample Size } \bullet \text { Stress Duration } \bullet A F(M O S F E T)}+\frac{1}{\text { sample Size } \bullet \text { Stress Duration } \bullet A F(\text { DriverIC })} h r^{-1}$
$\lambda=0.19010^{-9} \mathrm{hr}^{-1}$ or 0.190 FIT; MTTF $=(1 / \lambda)=5,251.7$ million hrs $=599,511$ years
The calculation shows failure rate is 0.190 FIT, MTTF is $5,251.7$ million hours under typical operating conditions.

ALPHA \& OMEGA
SEMICONDUCTOR

III. ESD and Latch Up Test Results

Test	Test Conditions	Total Sample Size	Number of Failures	Reference Standard
Electrostatic Discharge Human Body Model	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},+/-2 \mathrm{kV}$	10	0	JESD-A114
Electrostatic Discharge Charged Device Model	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C},+/-1 \mathrm{kV}$	10	0	JESD-C101
Latch Up	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $+/-100 \mathrm{~mA}, 1.5 \mathrm{x}$ OV	10	0	JESD78
Latch Up	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$, $+/-100 \mathrm{~mA}, 1.5 \mathrm{x}$ OV	10	0	JESD78

Note: ATE results are used to determine PASS/FAIL. Parametric shift<10\%.

