AOS Semiconductor Product Reliability Report

AOZ5311NQI rev.1.

Plastic Encapsulated Device

ALPHA \& OMEGA Semiconductor, Inc
475 Oakmead Parkway
Sunnyvale, CA 94085
United States
Tel: (408)830-9742
www.aosmd.com

May, 2019

ALPHA \& OMEGA
SEMICONDUCTOR

This AOS product reliability report summarizes the qualification results for AOZ5311NQI in QFN5x5-31L package.

Review of the electrical test results confirmed that AOZ5311NQI passes AOS quality and reliability requirements for final product and package release.

I. Table of Contents:

General Description:

AOZ5311NQI is a high-efficiency synchronous buck power stage module consisting of two asymmetrical MOSFETs and an integrated driver. AOZ5311NQI is available in a tiny $5 \mathrm{~mm} \times 5 \mathrm{~mm} 31$-pin QFN package and is rated over a $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range.

Absolute Maximum Ratings	
Parameter	-0.3 V to 7 V
Low Voltage Supply VCC, PVCC	-0.3 V to 25 V
High Voltage Supply VIN	-0.3 V to (VCC+0.3V)
Control Inputs PWM, FCCM	-0.3 V to 32 V
Bootstrap Voltage DC (BOOT - PGND)	-0.3 V to 7 V
Bootstrap Voltage DC (BOOT - VSWH)	-0.3 V to 9 V
Bootstrap Voltage Transient (1) (BOOT - VSWH)	-0.3 V to 25 V
Switching Node Voltage DC VSWH	-8 V to 33 V
Switching Node Voltage Transient (2) VSWH	(PGND-0.3V) to (PVCC+0.3V)
Low Side Gate Voltage DC GL	(PGND-2.5V) to (PVCC+0.3V)
Low Side Gate Voltage Transient (2) GL	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Storage Temperature (Ts)	$150^{\circ} \mathrm{C}$
Max Junction Temperature (Tj)	2 kV
ESD Rating (3)	4.5 V to 20 V
Recommended Operating Ratings	
High Voltage Supply VIN, VSWH	4.5 V to 5.5 V
Low Voltage Supply, Logic VCC, PVCC	

Note:
(1) Peak voltages can be applied for 10 ns per switching cycle
(2) Peak voltages can be applied for 20 ns per switching cycle
(3) Devices are inherently ESD sensitive. Handling precautions are required. Human Body Model rating: $1.5 \mathrm{k} \Omega$ in series with 100 pF

II. Package and Die Information:

Product ID	AOZ5311NQI
Package Type	QFN5x5-31L
Die Size	IC: $960 \times 1040 \mathrm{um} 2$ HS MOSFET: $1150 \times 1820 \mathrm{um} 2$ LS MOSFET: $1800 \times 2250 \mathrm{um} 2$
Die attach material	IC: non-conductive epoxy MOSFETs: solder paste
Bond wire	Au, 1.0 mil
Mold Material	EME-G700HC D14*5.8g
Lead Plating	Pure Sn
MSL	Level 1

III. Qualification Tests Requirements

o AOZ5311NQI is a derivative product
o 3 lots 1000 hrs HTOL
o 3 lots preconditioning, 96 hr PCT, 96 hr uHAST, 1000 cycle TC, 1000 hr HTS
o 1 lot HBM, CDM ESD, Latchup
o 2 lots 1000 hr HTRB, HTGB (MOSFETs, derivative qualification)
o $3 x$ IR reflow +250 cycle TC

IV. Qualification Tests Result

Test Item	Test Condition	Sample Size	Result	Comment
HTOL	$\begin{aligned} & \text { Per JESD 22-A108B } \\ & \mathbf{V}_{\text {IN }}=25 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	3 lots (80/lot)	pass 1000hrs	
ESD	$\begin{aligned} & \text { JESD 22-A114E (HBM) } \\ & \text { JESD 22-A115A (MM) } \\ & \text { JESD 22-C101C (CDM) } \end{aligned}$	3 units	pass	$\begin{aligned} & \text { 2.0kV (HBM) } \\ & \text { 200V (MM) } \\ & 1.0 \mathrm{kV} \text { (CDM) } \end{aligned}$
Latch-up	Per JESD 78A	6 units	pass	$\pm 100 \mathrm{~mA}$
Power Cycling	$\begin{aligned} & \mathrm{V}_{\text {IN }}=19 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.0 \mathrm{~V}, \mathrm{~F}_{\text {SW }}=800 \mathrm{kHz}, \\ & \mathrm{I}_{\text {OUT }}=30 \mathrm{~A}, \text { VCC cycled } 0 \mathrm{~V}-5 \mathrm{~V} \end{aligned}$	10 units	pass	$\begin{aligned} & \hline \text { 35hr, } \\ & >63 \mathrm{k} \text { cycles } \end{aligned}$
$\begin{aligned} & \text { HTGB } \\ & \text { (MOSFETs) } \end{aligned}$	$\begin{aligned} & \text { Temp }=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{GS}}=12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \text { lot HS MOSFET (} 77 \mathrm{pcs} \text {) } \\ & 1 \text { lot LS MOSFET (} 77 \mathrm{pcs} \text {) } \\ & 9 \text { lots MOSFET (} 77 / \mathrm{lot} \text {) } \end{aligned}$	pass 1000hrs pass 1000hrs pass 1000hrs	Derivative process Derivative process Platform process
HTRB (MOSFETs)	$\begin{aligned} & \text { Temp }=150^{\circ} \mathrm{C} \\ & V_{\text {DS }}=25 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \text { lot HS MOSFET (} 77 \mathrm{pcs} \text {) } \\ & 1 \text { lot LS MOSFET (} 77 \mathrm{pcs} \text {) } \\ & 9 \text { lots MOSFET (} 77 / \mathrm{lot} \text {) } \end{aligned}$	pass 1000hrs pass 1000hrs pass 1000hrs	Derivative process Derivative process Platform process
$\begin{aligned} & \text { H3TRB } \\ & \text { (MOSFETs) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}, \mathbf{8 5 \%} \mathrm{RH}, \mathrm{V}_{\text {DS }}=\mathbf{2 5 V}$	3 lots (77/lot)	Pass 1000hr	Platform process
$\begin{aligned} & \text { HAST } \\ & \text { (MOSFETs) } \end{aligned}$	$130^{\circ} \mathrm{C}+/-2^{\circ} \mathrm{C}, \mathbf{8 5 \%}$ RH, 33.3 psi	3 lots (77/lot)	pass 96hrs	Platform process
Power Cycling (MOSFETs)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	3 lots (77/lot)	pass 15k cycles	Platform process

ALPHA \& OMEGA
SEMICONDUCTOR

Test Item	Test Condition	Sample Size	Result	Comment
$3 x$ IR reflow and 250 Temperature Cycles	3x IR reflow @ $260^{\circ} \mathrm{C}$; TC test condition: $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, air to air (2cyc/hr)	3 lots (3000 /lot)	pass	
Pre-Conditioning (MSL1)	Per JESD 22-A113 $85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}, 3$ cycle reflow @ $260^{\circ} \mathrm{C}$	3 lots (308/lot)	pass MSL1	
PCT	$\begin{aligned} & 121^{\circ} \mathrm{C}, 15 \pm 1 \mathrm{PSI}, \\ & \text { RH }=100 \% \end{aligned}$	3 lots (77/lot)	pass 96hrs	
UHAST	$\begin{aligned} & 130+/-2^{\circ} \mathrm{C}, 85 \% \mathrm{RH}, 33.3 \\ & \mathrm{psi} \end{aligned}$	3 lots (77/lot)	pass 96hrs	
Temperature Cycle	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, air to air (2cyc/hr)	3 lots (77/lot)	pass 1000 cycles	
HTS	$\mathrm{T}_{\mathrm{A}}=+150^{\circ} \mathrm{C}$	3 lots (77/lot)	pass 1000hrs	

ALPHA \& OMEGA
SEMICONDUCTOR

V. Reliability Evaluation

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the product. Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

FIT rate (failures per billion device hours): 0.150
MTTF = 6,649.6 million hrs
Condition: $\mathrm{V}_{0}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{o}}=55^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{s}(\text { DriverIC })}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}(\mathrm{MOSFET})}=25 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{s}}=150^{\circ} \mathrm{C}$
Sample Size: MOSFET $=6,153$, Driver IC $=3,874$
The failure rate (λ) is calculated as follows:
$\lambda=\chi^{2}[C L,(2 f+2)] / 2 \times[1 /(S S \times t \times A F)]$; [equation 1$] \quad$ where $\quad C L=\%$ of confidence level
$\mathrm{f}=$ number of failure
SS = sample size $\mathrm{t}=$ stress time

Looking up the $\chi^{2} / 2$ table for zero failure (burn-in) with 60% confidence, the value of $\chi^{2}[C L,(2 f+2)] / 2$ is 0.92 .
The Acceleration Factor (AF) is calculated from the following formula (both temperature and voltage acceleration factors are used in the final acceleration factor calculation) :
$A F=A F_{T} \times A F_{V}=\exp \left[\left(E_{a} / k\right) \times\left(1 / T_{0}-1 / T_{S}\right)\right] \times \exp [\beta(\mathrm{Vs}-\mathrm{Vo})]$ where $\quad E_{a}=$ activation energy
k = Boltzmann constant
$\mathrm{T}_{\mathrm{o}}=$ operating T_{J}
$\mathrm{T}_{\mathrm{s}}=$ stress T_{J}
$\mathrm{V}_{\mathrm{s}}=$ stress voltage
$\mathrm{V}_{\mathrm{o}}=$ operating voltage
$\beta=$ voltage acceleration coefficient
Assuming typical operating environment, $\mathrm{V}_{\mathrm{o}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{o}}=55^{\circ} \mathrm{C}, \mathrm{E}_{\mathrm{a}}=0.7 \mathrm{eV}, \mathrm{V}_{\mathrm{s}(\text { DriverIC })}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}(\mathrm{MOSFET})}=25 \mathrm{~V}$, $\mathrm{T}_{\mathrm{s}}=150^{\circ} \mathrm{C}, \beta=0.5$ (silicon defect)
$A F($ DriverIC $)=\exp \left[\left(\frac{0.7}{8.617 E-5}\right) \bullet\left(\frac{1}{273+55}-\frac{1}{273+150}\right)\right] \bullet \exp [0.5 \bullet(28 V-20 V)]$
$A F(M O S F E T)=\exp \left[\left(\frac{0.7}{8.617 E-5}\right) \bullet\left(\frac{1}{273+55}-\frac{1}{273+150}\right)\right] \bullet \exp [0.5 \bullet(25 V-20 V)]$

Substituting the values in equation 1 , we have $\lambda=2 \bullet \lambda(M O S F E T)+\lambda($ DriverIC $)=$
$0.92 \bullet \frac{2}{\text { Sample Size } \bullet \text { Stress Duration } \bullet A F(M O S F E T)}+\frac{1}{\text { sample Size } \bullet \text { Stress Duration } \bullet A F(\text { DriverIC })} h r^{-1}$
$\lambda=0.15010^{-9} \mathrm{hr}^{-1}$ or $0.150 \mathrm{FIT} ; \mathrm{MTTF}=(1 / \lambda)=6,649.6$ million hrs $=759,089$ years
The calculation shows failure rate is 0.150 FIT, MTTF is $6,649.6$ million hours under typical operating conditions.
The qualification test results confirm that AOZ5311NQI passes AOS quality and reliability requirements for product manufacturing release.

Revision	Release Date	Comments
1.0	April 1, 2019	Initial Release
1.1	May 1, 2019	Updated FIT to include voltage acceleration factor

